VHDL-FORUM

for CAD in

WG 102 / 10.5
« ECIP
v Esprit 2072

VHDL-Forum for CAD in Europe, Fall '94 Meeting

Grenoble, France - September 19, 1994
at EURO-DAC '94 with EURO-VHDL '94, Alpexpo and Alpes Congrés, Grenoble, France,
September 19-23, 1994

Proceedings
User Paper Session

Sponsors:

IFIP : ECIP

WG 10.2 / 105 *...+ Esprit 2072

System-Level Modeling of an ATM Node in VHDL

M. Cornero, M. Marchese, M. Chirico, F. Curatelli
DIBE — University of Genova
Via Opera Pia 114, 16145 Genova, Italy

Abstract

The design of Broadband Integrated Service Digital Networks requires the investigation of specific techniques to guarantee
the different requirements of the supported traffic classes. In this context, a unified environment for the simulation and the
design of an ATM node is a useful approach for validating the effectiveness and the implementation aspects of different
congestion control strategies. In this paper we describe how this approach can be followed using VHDL. In particular,
a complete ATM node has been modeled in VHDL in a modular and flexible way, so that different alternatives in the
node architecture can be easily verified. Compared to previous works concerning the software simulation of networks
our approach is more focused on higher protocol layers, and on the functionality of a single network node.

1 Introduction

In the near future new telecommunication services, like videotelephony, videoconferencing, high-speed data, HDTV etc.
will be added to existing services, such as voice and low speed data. With the evolution of telecommunication techniques,
and in particular with the advances in optical transmission technologies, higher transmission speeds can be achieved, so
that the support of different services on a unified Broadband Integrated Services Digital Network (B-ISDN) has become
feasible.

Due to the different requirements of each communication service a new transfer mode has been defined for broadband
networks. In particular, the Asynchronous Transfer Mode (ATM) technique was selected in 1987 by CCITT to be the
transfer mode of the future B-ISDN. ATM is based on advanced technologies (optical transmission and VLSI) and is
defined as a specific POTM (Packet Oriented Transfer Mode) where the information is statistically multiplexed.

The feasibility of some critical parts of an ATM node has been already demonstrated. For example the realization
of an ATM switch is presented in [1], and an ATM layer chip, performing typical ATM functions, such as cell assembly
and disassembly, is presented in [2]. However, due to the integrated support of different services, further investigation is
required as concerns higher layers in the B-ISDN protocol model for ATM. In particular the satisfaction of each specific
service requirement must be guaranteed by a congestion control mechanism. This topic has received a great deal of
attention in the literature (see, for instance, [3] for a survey and [4] for specific papers). In particular, several works have
addressed the issue of admission control ([S], [6], [7], [8] and [9] among others), as a means of guaranteeing quality of
service to the connections in progress.

The purpose of the presented work is to build an experimental bench to 1) validate theoretical models of congestion
control in ATM nodes through simulation, and to 2) study hardware and software architectures well suited for the
implementation of those models. In particular we have modeled a complete ATM node in VHDL by adopting a modular
approach, so different alternatives in the node architecture and functionality can be easily verified. Since the main
purpose of the work is to study congestion control techniques, the other functions of the node, e.g. switching, are
modeled at an high-level of abstraction in order to avoid unnecessary complications and to achieve a high simulation
efficiency. The effectiveness of congestion control mechanisms is strongly related to the statistical parameters of the
traffic sources applied to the network, so that information sources have been modeled very carefully, in order to reflect
realistic conditions as much as possible.

Compared to previous works concerning the software simulation of networks ([10], [11], and [12], [13] for more
recent works on distributed simulation techniques) our approach is more focused on higher protocol layers, and on the
functionality of a single network node. Moreover, a unified environment for the simulation and the design of an ATM
node, as presented in this paper, is a useful approach for validating different congestion control strategies and to evaluate,
at the same time, their influence on the system architecture.

a1

The paper is organized as follows. In Section 2 the basic characteristics of ATM are outlined. The basic data types
used in the VHDL specifications are described in Section 3, while in Section 4 we illustrate our model of traffic sources.
An overview of the complete ATM node description is presented in Section 5, while in Section 6 we present a congestion
control technique that we have investigated. Some concluding remarks are illustrated in Section 7.

2 Overview of ATM

The basic characteristics of the ATM technique are [14], [15]:

1. The multiplexed information flow is organized in fixed size units (53 bytes), called cells. Each cell consists of a
user information field (48 bytes) and a header whose main function is to guarantee the proper routing of each cell
in the network (an error control procedure is applied on the header content);

2. No error protection or flow control on a link-by-link basis is provided, thanks to the high reliability of optical
transmission. In this way a much higher rate than usual packet switching systems can be achieved, as the operations
performed by the network on every single cell are considerably limited;

3. The switching principle adopts a connection-oriented routing, i.e. before information is transferred from the
terminal to the network a logical/virtual connection setup phase must allow the network to do the reservation of
the necessary resources, if these are available; if no sufficient resources are available the connection is refused
to the requesting terminal. At call setup it is checked whether statistically enough resources are available. This
means that with a certain probability it can be guaranteed that resources will be available and no queue overflow
will occur. The probability of overflow can be dimensioned by queuing theory.

In addition to user cells, some other information, such as communication set-up signals, is transmitted over separate
channels.

An important characteristic of ATM is that it takes advantage of the bursty nature of most traffic sources. Bursty
sources generate information at a non-fixed rate, i.e. they alternate active periods, during which information is produced
at near-peak rate, and idle periods, during which no information is produced. To take advantage of bursty sources ATM
uses the statistical multiplexing technique which is more efficient than a static resource allocation (for example circuit
switching) as regards the bandwidth utilization and the number of accepted connections.

However, a congestion control mechanism is needed in order to sausfy the Quality of Service (QoS) requirements
of each service. Typical QoS requirements are expressed in terms of cell loss and cell delay rates. In general different
services require different QoS; for example a relatively hi gh cell loss rate but a small cell delay rate is tolerated in voice
transmission, while the contrary holds for data transmission.

3 Basic data types

A part of the ATM package, containing type definitions, constant declarations ecc. which are used in the VHDL
specifications, is illustrated in figure 1. As explained in the following sections the whole system is characterized in
terms of the supported services, defined by means of the enumeration type class-type. Every constant associated to
a specific service class is defined using a constant array, so that parametrized descriptions can be easily specified.

User cells and signalling are represented by means of records, as shown in Figure 1. As it is clear from cell record
structure, cells do not contain any information field, since itis useless for our purposes. The cell record is an abstraction of
the information contained in each cell header, relevant to con gestion control. In particular each cell is uniquely identified
by the node input 1ink where the cell comes from, the cell traffic c1as s, and the connection which generated the cell,
specified by means of the connection_id field.

As regards the signalling record, a limited set of signals, defined by the signalling.message enumeration type,
has been specified.

42

package atm is
type class_type is (TELEPHONE, VIDEO, SLOW _DATA, FAST DATA);
type real class _array is array(traffic . class) of real;
type natural class_array is array(traffic_class) of natural;
—-— constants
constant PEAK BAND : real class_array :=
- (TELEPHONE => 0.064,
VIDEO => 150.0,

- e & s 8 8 .))

= s

-- cell and signaling types
type cell rec is record
link : natural;
class : class_type:;
connection_id : natural:
end record;

type signalling message is (conn_req, conn_ack, conn_end);
type signalling rec is record

link : natural;

class : class_type;

connection_id : natural;

message : signalling message;
end record;

end atm;

Figure 1: The ATM package.

|
;

Bo lo

Co

Figure 2: A bursty connection.

4 Modeling traffic sources

As already said, ATM takes advantage of bursty sources, characterized by active periods during which information is
produced at peak rate, and idle periods during which no information is produced, as shown in figure 2. The information
traffic is generated by a number of connections. A connection of a given traffic class h is completely statistically described
by the mean connection duration C},, the mean burst duration Bl and the connection burstiness b" defined as the ratio
between the peak and the mean bandwidth of traffic class k. In order to model the connection behavior, it is necessary to
calculate the mean duration of idle periods (I3 as follows: I}, = B} (b® — 1). During active periods, a connection
produces information at the peak rate of its traffic class, which is of course smaller than the total channel capacity Cr.

In addition to the parameters characterizing a single connection, the behavior of a traffic class 4 is determined by the
mean connection generation rate (CJ), i.e. the rate at which new connections requests of traffic class are submitted to
the network.

Link source. The information traffic supported by a single network link is model with the 1ink source entity,
whose structure and hierarchical decomposition is illustrated in figure 3. The information relative 1o traffic class A is
generated by the class source entity with input generic parameter h. The basic block of our traffic source model
is the connect ion entity with input generic parameter h, which generates the information of a single connection of
traffic class h. As shown in figure 3 MAX_CONN connections are instantiated in each class source entity.

Class source. The class source entity is composed of the connection activator component which inter-
acts with MAX_CONN connections. The VHDL description of the class source entity is shown in figure 4 3). The

43

functions

activator

Figure 3: The structure of the Link source entity.

interaction between the connection activator and the connect ions is mediated by the two arrays conn_id
and active.conn. Initially every connection C; is inactive, and this is indicated by * 07 s in all the items of the
active.connaray. The connection activator generatesconnectionrequests, which are sent to the network by
the signal signalling,atrate Cc. If the connection request signal Creg; of connection C; is accepted by the network
(see next sections), a connection acknowledgment signal, Cack;, is sent back to the connect ion act ivator, which
activates a connection as follows: an inactive connection is selected by looking for an item j in the act ive_conn
array such that active_conn([j] = ’0’; conn.id[3] is then set to i, an event that activates connection j.
Once activated, connection j sets act ive_conn[3] 10’ 17 and then starts the generation of its cells. When connection
J terminates it sends a connection.end signal to the network, and it sets act ive_conn [3) to 0, notifying its
inactive state.

In order to obtain a realistic model of the traffic statistics a relevant number of connect ions (e.g. 500 - 1000)
must be instantiated for each class source. Asaconsequence the number of input signals to the resolution functions
illustrated in figure 3 is very large, causing a considerable degradation in the simulation run time, also taking into
account that the number of generated cells is very large 100. A solution to this problem is provided by the "process’
statement specified inside the *generate’ statement of figure 4 a), which disconnects all the drivers of the cells and
signallingsignals whose connection_id field is 0. The disconnection is obtained by means of "null’ assignments
and by declaring the cells and signalling signals as bus’s, as highlighted in figure 4 a). This approach works
well since the connection_id field of the cell signals produced by connection C; is set to ¢ only for a very small
time interval (1 ns), and to "0’ for the rest of the time (se¢ below). This optimization is essential as it yealds a dramatic
improvemenmt in the simulation times.

Connection. The behavioral description of the connection entity is illustrated in figure 4 b). The Conn process waits
until connection.id > 0, an event caused by the connection activato r, as already explained. The Conn
process generates statistically the connection length. Bursts are generated by the Burst loop, and cells are generated at
the source peak rate by the Ce 11 loop. Note that one nanosecond after each cell production the connection_id field
of the cel1s signal is set to zero in order to resolve multiple drivers at the higher hierarchical level, as described in the
previous paragraph. Every statistical parameter is generated using the exponential distribution, which is well suited

44

entity class source is
generic(class: class type);
port(cells : ocut resolved cell rec bus;
signalling : out resolved . i sig rec bus);
end class source;

architecture arc of class scurce is
signal conn id : natural amy(l to MEX CONN) ;
signal act:.ve conn : bit wvector(l to MAX COW) ;
signal cell trrp cell amy(l to MAX CDLN),
signal sig tmp : s:.g_anay(l to m_cxmn,
kegin
REQ: conn generator

generic map(class)

port map(cann_id,active conn,signalling);

G: for I in 1 to MAX CONN generate
COMN: connection
generic map (class)
port map(conn id(I), active conn(I),
cell _tmp(I), sig | (1)) ;

process (cell tmp(I), sig tmp(I))
begin
if cell tmp(I).connection id > O then
cells <= cell _tmp(I) ;
else
oells <= mill;
end if;
if sig tmp(I).connection id > O then
signalling <= sig f trp (1) ;
else
signalling <= mll;
end if;
end process;
end generate;
end arc;

a)

entity connection is
generic(class: class type; link : natural);
port (connection id : in natural;
active flag : out bit;
cells : out cell rec;
sig out : signalling rec);
end connection;

architecture arc of connection is
gen: prooess

constant cell time : real :=
(1/PEAK BAND(class)) * T _cell;
begin
wait until connection id > 0;
active flag <= '1';
conn _len := exponential (MEAN CONN IEN(class));
Burst: while conn len > 0 loop
burst len := exponential (MEAN BURST LEN(class));
mlel:mrst len > 0 and conn len > 0 loop
cells <= tr.ansport
(link => link class => class,
connection id => connection id),
cells.connection id <= 0 after 1 ns;
wait for cell time * 1 us;

Call:

burst len := burst len - cell time;
conn_len := conn_len - cell time;
end locp;
idle len := exponential (MEAN IDLE IEN(class));
1f1dlelen>c:onnlent‘_hen
1dle_l := conn len;
end if;

wait for idle len * 1 us;
conn_len := conn len - idle len;
end loop;
sig out <= (link => link, class => class,
connection id => connection id,
message => conn_end) ; -
sig out.connection id <= 0 after 1 ns;
active flag <= '0';
end process;
end arc; b)

Figure 4: The VHDL specification of a) the class source entityandb) the Connection entity.

for communication applications.

Connection activator.

The connection activator entity is composed of two concurrent processes

reqggenerator and conn_activator. The req.generator process generates the connection requests sig-

nals at rate cg, while connection acknowledgments are processed by the conn_activator process.

5 The ATM node model

Our model regards an ATM node with L;, incoming and Loy. outgoing links, whose input traffic is generated by M
different traffic classes per input link, as explained in the previous section. The hierarchical VHDL decomposition of the
complete system, obtained by means of entity declarations and component instantiations, is shown in Figure 5. In this
section we describe the functionality of the complete ATM node by analyzing each block separately, except the Access
Contreoller and Bandwidth Allocator blocks which are the subject of section 6.

45

_ATM system - generic (Lin, Lout, M) e
; ATM node - generic(Lout, M)

._,_)_S):.gnal:l.j_n
%»
: : v

. gana (2) ‘Switch Tablg

L Conn| Link
Source 2 B

0
o Link 4P
. [Source Lin—p

Output Stage 1 - generic(M)

Bandwidth
Allocator

Class
Selector

pick (M)

Output Stage Lout - generic(M)

cells (Lout)

Figure 5: The ATM node model.

5.1 ATM system

At the highest hierarchical level, the complete system is modeled as an entity with three generic input parameters L;,, and
Lou: and M, indicating the number of input and output links and the number of traffic classes respectively. As shown in
figure 5, L;n input link sources, each composed of M traffic classes, are instantiated in order to model the node input
traffic. The global cell and signalling traffic is conveyed into the two signals cel1ls and s ignalling by means of the
same resolution functions illustrated in the previous section.

Modularity in the system description is achieved by means of generics, combined with generate statements for
component instantiations, as in the case of the L;,, input link sources. An extensive use of this specification style results
in a general and flexible description of the compete system, characterized in terms of M traffic classes, L;,, input links
and L, output links.

5.2 ATM node

The ATM node is modeled as an entity with two input signals cells and signalling, and two generic input
parameters Loy: and M, as indicated in Figure S. As already said ATM is connection-oriented. As a consequence all
the cells of a connection follow the same path through the network. The path is determined at the connection set-up by
means of signals which are processed by the Router element contained in each node. In this paper we do not deal
with the routing strategy, which is described in detail in [16]. Concerning the functionalities addressed in this paper, the
routing component is only used to address connection requests to the proper Access Controller component,
which decides whether 1o accept or reject connections by following the congestion control strategy described in section
6. After a connection C; has been accepted the router stores the association between that connection and the selected

output link L; in the Switch_Table, so that every cell belonging to the connection C; will be sent to output the link
L; by the Switch component.

46

entity pick block is V(1)

port (V. h : in real; o wARb v (M)

pick : out bit):;
end pick_block; MUX - generic(M)
architecture arc of pick_block is pick (1) -
begin - <& pick block 1
P: process .
variable t: real; .
begin .
t := (CT/Vh) *T cell; pick (M) :
wait for t*l us; k- pick block M g |
pick <= transport 'l';

pick <= transport '0' after 1 ns;
end process;

end arc; a) b)

Figure 6: a) The pick and b) the Mux entities.

Switch. Although the switching element is an essential part of an ATM node, it does not affect the congestion control
mechanism in our model, so that we have modeled it as an ideal component, i.e. it does not introduce any delay and it
does not loose any cell. Each incoming cell is sent to the proper output link by looking up the Switch_table, whose
entries are filled in by the router at the connection set-up.

5.3 Output stage

Each output stage is composed of a Congestion Control component, which is explained in the next section, a
Class Selector, M OQutput Buffers and aMux, as indicated in figure 5.

Class Selector. An important characteristic of our model is that each output stage is composed of a separate buffer for
each wraffic class. The Class Selector component sends the information cells to the proper Output Buffer,
according to the traffic class of each cell.

Output buffer. In the node model output buffers are FIFO queues whose size is determined off line on the basis of
performance requirements and the declared traffic intensity of the corresponding class. A cell is lost if it is sent to a full
 buffer, while a cell is considered delayed if the delay introduced by the FIFO exceeds a given threshold T2

As we explain in the next section, the efficiency of the congestion control strategy is measured by the number of
accepted and rejected connections, while the correctness of the strategy is verified by checking whether the quality
of service requirements (QoS), in terms of cell loss and cell delay rates, are satisfied. This is done by maintaining
two counters in each Output Buffer component, indicating the total number of lost and delayed cells respectively.
No other parameters are relevant concerning congestion control. In particular, since we are not interested in network
simulations, but only in the analysis of a single node, cells do not need to be sent out of the node. Therefore each
output buffer is simply modeled with a state variable FIFO_state, indicating the number of cells present in the FIFO.
More precisely, each time a cell is queued FIFO_state is incremented by one, while each time a cell is picked out
FIFO-state is decremented. If FIFO_state equals the buffer size and a cell enters the buffer, the cell is lost. In this
case the lost.cells counter is incremented instead of FIFO_state. To check weather an incoming cell is delayed,
and so to update the delayed cells counter, the delay of the cell is estimated as follows:

cell_delay = FIFO_state * % * Teatrs

where the parameter V", available from the Bandwidth Allocator (see section 6), is the bandwidth allocated to
class h and T,y is the time required to transmit a single cell.

47

entity access_controller is
generic(M : natural);
port (N max : in natural class_array;
sig_in : in signalling rec;
sig_out : out signalling rec;
Nc : inout natural_class_array;
Nb : inout natural class_array);
end access_controller;

architecture arc of access_controller is
begin
P: process (sig_in)
begin
if sig_in.message = conn_end then
Nc(sig_in.class) <= Nc(sig_in.class) - 1;
else if sig_in.message = conn_reg then
if N _max(sig_in.class) = Nc(sig_in.class) then
Nb(sig_in.class) <= Nb(sig in.class) + 1;
else
Nc(sig in.class) <= Nc(sig_in.class) + 1;
sig_out <= (link => sig_in.link,class => sig_in.class,
message => conn_ack,
connection_id = sig_in.connection_id);
end if;
end if;
end process;
end arc;

Figure 7: VHDL specification of the Access Controller entity.

Mux. The Mux entity sends the pick signals to the output buffers, indicating the consumption of a cell. Pick signals
are sent to the buffer Bj, at a rate which depends on V". Similarly to the modeling of traffic sources, a sequential
specification of such a behavior would require an unnecessary overhead, while the exploitation of the VHDL capabilities
to express concurrency provides a straightforward solution. The pick signal for class A is generated by the simple
process illustrated in figure 6 a). The pick_block component is then instantiated M times, once for each output buffer,
in the Mux entity as indicated in figure 6 b).

6 Congestion control

As already said, in our model we suppose thal the traffic in the network is divided into M classes of service, each of one
characterized by statistical parameters, like peak and average transmission rate, as well as by QoS requirements, like cell
loss probability and cell delay.

The QoS requirements are guaranteed by the Access Controller. This component decides weather a connection
request for traffic class A can be accepted or not, by checking if the total number of already accepted connections N7,
plus the new one exceeds a threshold value N2 . More precisely, as indicated in Figure 7, the following condition is
checked

N vl . (1)

If condition 1 is satisfied the connection is accepted, otherwise it is rejected. Two counters NI and N} are maintained
in order to keep track of the number of active and blocked (rejected) connections respectively.

The values Ny, is calculated by the Bandwidth Allocator,and is given by
‘N:‘m:: . min{ﬁyr?wz,D 1 *Nrfmz,f.} (2)

where N2 . 5 is the maximum number of connections the output link can support as regards the cell delay requirement
and Nt az,z 1S the maximum number of connections the link can support as regards the cell loss requirement for traffic
class h.

48

from

Access
Controller
Ne Ne Nb Nb
1 bz]
from Ne Calc | Vain Yy + + 1
Access Vmin 1 \ 3 v. T to Mux
Controller . Bandwidth ' 1
__> . = 4 M
. Optimization | Vv >
M
Ne Calc /
Vmin M [viin
1
- <« calc ‘Ji
Access _ Nmax1]
Controller .
< -
-
Calc |
¢ Nmax M !‘
L

Figure 8: Computation flow and hierarchical decomposition of the Bandidth Allocator.

The computation of N2 ; and N __ 1, is based on a statistical approach derived from the queuing theory, and it
constitutes the kernel of the congestion control strategy. More precisely,

N:m:,r, = mazn{N | Ei;o .Px’o.ss"(n)vﬁvN o 3)
‘N:mz,D =mazn{N | Z::a Pdelay®(n)vh \ < 6"}

where Ploss"(n) (Pdelay®(n)) represents the cell loss (delay) rate of traffic class h given that there are n active
connections (i.e. notidle), and v} 5 is the probability of having only n active connections out of N accepted ones. ¢”
and 6" are the QoS requirement of traffic class h.

The computation of N depends on the bandwidth allocated to traffic class k. The flow of the required computation
and the hierarchical VHDL decomposition of the Bandwidth Allocator is depicted in Figure 8. The aim of the
bandwidth allocation is to partition the output link capacity Cr among the different traffic classes in order to minimize
the total number of rejected connections, Efﬂ N*. The capacity partitions V;%, are dynamically computed by the
* Bandwidth Optimization at discrete time instants m = 0, k, 2k, ..., where £ is the length of the allocator
intervention period. The optimization phase must be preceded by the determination of the minimum bandwidth V2, |

which assures service quality (QoS) for the connections already in progress for each traffic class traffic, i.e. N The set

of inequality constraints
|t 3 e)
and the equality constraint
M
S Vi=Cr (5)
h=1

fix the boundaries of the feasibility space for the new capacity partitions. As illustrated in figure 8, each {V,2. } can be
calculated independently from each other. In particular, similarly to equations 3, V,%, . is defined as follows:

Nt NE
V. =miny{V | ZP(ossh(n, V)vh v <€ and Z Pdelay®(n, Vvl \ < 6%} (6)
n=0 n=0

where the dependency from V' has been explicitly indicated. The evaluation of the quantities referenced in equations 3
and 6 requires complex computations based on the queuing and probability theory. Similar quantities must be evaluated
in the bandwidth optimization procedure. The details on the required computations can be found in [9].

49

7 Concluding remarks

Compared to other modeling alternatives, €.g. using another programming language like C, VHDL offers several
advantages, such as a the possibility to exploit architectural decomposition, in addition to functional decomposition,
through the use of component instantiation statements. By means of this feature, the adoption of a modular specification
style, which is mandatory in case of complex system specifications, is greatly encouraged. Another significant advantage
is the support of concurrent specifications, which has simplified the system description to a great extent.

Furthermore, through the use of commercial analysis and synthesis tools, VHDL provides a path to hardware imple-
mentation, which is the final objective of our work, at least as concerns the congestion control strategy. Although we have
described the complete system at behavioral level, we are already able to investigate different architectural alternatives
by means of a detailed decomposition, together with the behavioral VHDL specifications of all the computational blocks.
For example, as illustrated in figure 8, different computations can be performed in parallel (e.g. the set of V2, . and the
set of N2) so that serial/parallel implementation trade offs can be analyzed. Moreover we have located a common set
of critical operations to be performed in every block, which suggest to design a hardware (VLSI) accelerator to speed up
execution. However, the complexity of the required computations precludes the possibility of a VLSI implementation of
the complete congestion control system, so that we expect that a mixed hardware/software architecture will probably be
the most appropriate solution.

References

[1] P.BarriandJ. A. O. Goubert, “Implementation of a 16 to 16 switching element for ATM exchanges”, IEEE Journal
on Selected Areas in Communications, vol. 9, pp. 751-757, June 1991.

[2] C. A. Johnston and H. J. Chao, “The ATM layer chip: An ASIC for B-ISDN applications”, [EEE Journal on
Selected Areas in Communications, vol. 9, pp. 741-750, June 1991.

(3] T. Hong and T. Suda, “Congestion control and prevention in ATM networks”, JEEE Network Magazine, vol. 5, pp.
10-16, July 1991.

[4] Special Issue on Congestion Control in High-Speed Packet Switched Networks. IEEE Journal on Selected Areas in
Communications, 1991.

[5] E.C.Schoute, “Simple decision rules for acceptance of mixed traffic streams”, in Proc. ITC, Torino, Italy, September
1988.

[6] G. Galassi, G. Rigoglio, and L. Fratta, “ATM: Bandwidth assignment and bandwidth enforcement policies”, in
Proc. GLOBECOM '89, pp. 1788-1793, Dallas, Texas, November 1989.

[7] T.Kamitake and T. Suda, “Evaluation of an admission control scheme for an ATM network considerin g fluctuations
in cell loss rate”, in Proc. GLOBECOM '89, pp. 1774-1780, Dallas, Texas, November 1989.

[8] R. Bolla, F. Davoli, A. Lombardo, S. Palazzo, and D. Panno, “Adaptative bandwidth allocation by hierarchical
control of multiple ATM traffic classes”, in Proc. IEEE INFOCOM '92, pp. 30-38, Florence, Italy, May 1992.

[9] R. Bolla, F. Danovaro, F. Davoli, and M. Marchese, “An integrated dynamic resource allocation scheme for ATM
networks”, in Proc. IEEE INFOCOM '93, March 1993.

(10] H.T.MouftahandE. A. Krause, “Computer-aided design and performance evaluation of communication controllers
with mixed traffic”, JEEE Journal on Selecied Areas in Communications, vol. 6, pp. 180189, January 1988.

[11] V.S.Frost, W. Larue, and K. S. Shanmugan, “Efficient techniques for the simulation of computer networks”, IEEE
Journal on Selected Areas in Communications, vol. 6, pp. 146-157, January 1988.

50

[12] A. Bhimani and S. Ghosh, “Modeling and distributed simulation of complex broadband ISDN networks under
overload on loosely-coupled parallel processors”, in Proc. IEEE Int.l Conf. on Communications, pp. 1280-1284,
1992.

[13] A.Chaiand S. Ghosh, “Modeling and distributed simulation of a broadband-ISDN network”, IEEE Computer, vol.
26, pp. 37-52, September 1993.

[14] M. de Prycker, Asyncronous Transfer Mode Solution for Broadband ISDN, Ellis Horwood Limited, 1991.

[15] M. Listanti and A. Roveri, “Integrated services digital networks: Broadband networks”, European Transactions
on Telecomumunications, vol. 2, Jan-Febr 1991.

[16] R. Bolla, F. Davoli, and M. Marchese, “A distributed routing and access control scheme for ATM networks”, in to
be published in Proc. ICC '94, 1994,

51

