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ABSTRACT

The number of people accessing the Internet is growing rapidly leading, on one hand, to new possible attacks
used by cyber criminals and, on the other hand, to an increased complexity in the network management. It
is crucial designing systems able to prevent cyber attacks. At the same time, many efforts are provided in
order to get tools that can make easier network management. The Software Defined Networking (SDN)
paradigm has been designed with this aim allowing network administrators to manage networks easily.
This paper deals with an original Intrusion Detection System that exploits an SDN architecture to get the
information needed to feed a statistical-fingerprint based IDS. Specifically the proposed system collects
traffic data suitable to detect the possible presence of malware inside the network, and describes the design
and implementation of an application developed upon a SDN controller (Ryu) and its role in the malware
detection process.

Keywords: Software Defined Networking, Intrusion Detection System, Malware Detection, Flow Identifi-
cation

1 INTRODUCTION

An Intrusion Detection System (IDS) is a hardware/software component or group of devices and components
designed to monitor a network or a system to detect malicious activity. IDSs (Sabahi and Movaghar 2008)
may be classified depending on: data source (host based, network based, and hybrid); detection time (on
and off line); environment (wireless, wired, and heterogeneous); architecture type (centralized/distributed);
reaction (active/passive); and processing (Misuse Detection and Anomaly Detection). We focus the attention
on reactive network based systems, possibly operating online over heterogeneous networks. In parallel with
the evolution of IDSs, the need of simplifying network management has brought to the development of the
Software Defined Networking (SDN) (Stallings 2013, Nunes et al. 2014) paradigm. SDN is a networking
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architecture that decouples data and control actions. Data forwarding functions are located within devices
(switches, routers, gateways) called SDN switches, control functions are concentrated in SDN controllers.
The communication between an SDN controller and the SDN switches under its domain is implemented
through the OpenFlow signaling protocol.

Combining a malware detector IDS and SDN may represent a step forward in the service provided by SDN
and may allow simplifying the IDS design by means of SDN functions.

The remainder of this paper is organized as follows. Section 2 briefly reviews the state of the art. In
Section 3 a description of traffic flow is given and the app’s code and the main functional blocks of the
proposed architecture are illustrated. Section 4 shortly describes the malware tackled in the paper. Section
5 presents the emulated scenario. Section 6 shows the results of the proposed approach. Section 7 contains
the conclusions.

2 STATE OF THE ART

Although the solution proposed in (Zhang 2013) is not directly linked to malware detection, it introduces a
possible approach for collecting flow statistics in SDN. The author explains that the use of SDN is essential
to allow deep accuracy and granularity without introducing too much communication overhead inside the
network. SDN is able to control both temporal (how often to collect data) and spatial (how deep should the
inspection be inside the packet) granularity and to distribute flow counting tasks in a smart way among all
the switches in the network.

In (Skowyra, Bahargam, and Bestavros 2013), the authors design an environment that exploits SDN to im-
plement an IDS for a network of Embedded Mobile Devices, so avoiding the problems of standard IDSs
within this kind of network such as the inability to cope with end-host mobility and the limited set of ac-
tions which can be taken in response to anomalies. Without specifying any particular anomaly detection
algorithm, the authors classify what kind of anomalies can be observed: Stateless Flow, Stateful Flow, Vol-
umetric Anomalies, and Physical Anomalies. Within this classification, the category closer to our approach
is the volumetric anomaly, which is revealed from the statistics sent by the switches to the controller. How-
ever, the reference (Skowyra, Bahargam, and Bestavros 2013) focuses on the changes of the overall traffic
volume, whereas we consider more specific statistical features of flows.

The authors of (Wang et al. 2016) propose a behavioral-based Security Monitoring System that exploits
the flexibility of SDN to orchestrate the detection system. The used controller is Ryu but the collection of
statistical data and the classification of flows are delegated to sFlow that represents an additional element in
the network. The used classifier in (Wang et al. 2016) is SVM, a supervised classification algorithm in line
with our design choice.

In (Braga, Mota, and Passito 2010) a DDoS detector is implemented by SDN to allow recognizing malicious
flows without any deep packet inspection. The system architecture is similar to the one proposed in this pa-
per, even though some differences arise, mainly concerning the classification phase. The reference (Braga,
Mota, and Passito 2010) chooses NOX as a controller and develops an application that collects flows’ statis-
tics at predetermined time instants. 6 features are extracted from the collected statistics. Self Organizing
Map (SOM), an unsupervised classifier, is employed for flow classification.
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Figure 1: Ryu scheme

3 SDN CONTROLLER EMPLOYED WITHIN AN IDS

3.1 General Description of Ryu

The controller chosen to implement our IDS is Ryu (Ryu 2016), an open source, component-based, software
defined networking framework written in python, which provides software components by using API that
make easy for developers to create new network management and control applications. The general structure
of the code is sketched in Figure 1that highlights how the main central framework, responsible for the whole
system management, communicates with the switches through the OpenFlow protocol and with the different
apps through the APIs.

The main contribution of this paper is the design and implementation of the application (app) called
stats_manager, aimed at managing the flow tables in the used SDN switch, providing the information
needed to classify the traffic, and making decisions about “malware/normal” on the examined traffic.

3.2 Flow Structure

A traffic flow is usually defined as a group of packets sharing some common characteristics. We use one
of the most common conventions according to which a flow is a set of packets having the same 5-tuple: IP
source address, IP destination address, TCP/UDP source port, TCP/UDP destination port, Protocol field of
IP header.

For each traffic flow we store the data structure in Table 1 where the first 5 lines define the flow; the following
9 lines contain the features selected in our previous paper (Boero et al. 2016), which can be computed by
the SDN controller directly from the information received by the SDN switch through the statistic reply
message; last four lines are better explained in the following:

• state: describes the state of each flow with respect to the current time window (see section 3.3):
– ’B’ means “begun”
– ’C’ means “continued”
– ’E’ means “ended”

• extra_p and extra_b: some packets such as the packet-in, i.e. the first packet of a new flow,
and corresponding bytes cannot be considered by the SDN switch counters. In other words they
cannot be detected by using the statistic reply message. These fields allow the app not to lose this
information. These aspects will be elaborated below.

• label: it is the ground truth about the nature of the flow: normal or affected by malware. During the
training phase this information is used to give correct examples to the classifier. In the test phase
this field is ignored by the classifier and it is used only to assess the system performance.
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Table 1: Flow Dictionary Structure

Key Description

IP_src IP source address
port_src TCP/UDP source port
IP_dst IP destination address
port_dst TCP/UDP destination port
protocol Protocol field in the IP header

first_len length of the first packet
pkt_count number of packets in the flow
byte_count number of bytes in the flow
dur_sec duration of the flow(in seconds)
dur_nsec nanoseconds exceeding dur_sec
byte_rate byte rate of the flow
pkt_rate packet rate of the flow
avg_iat average inter-arrival time between packets
avg_pl average packet length

state current state of the flow
extra_p number of packets not registered in the statistics
extra_b number of bytes not registered in the statistics
label class of the flow (’normal’ or ’virus’)

Data related to a single flow are stored in the application by two structures: active_flows, which con-
tains all the flows currently active in the network, and ended_flows, which maintains the information
about the flows recently terminated.

3.3 Structure of the “Stats_Manager” Application

Initialization
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Figure 2: General picture of how the app interacts with Ryu

Being Ryu an event-based controller, developing an application for this framework means coding functions
that will be executed when a particular event happens. Figure 2 depicts the most relevant events for our goal
(denoted with a star) and their temporal action. In detail:
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1) Initialization: this event happens only when the controller instance is created, all the internal vari-
ables are initialized, and the monitor thread, which will periodically trigger the statistics’ request,
is started. The controller periodically sends a flow statistic request message in order to gather infor-
mation about the network traffic from all the switches in the network (just the used one in our case).
The time period elapsed between two consecutive messages is called time window and, in this paper,
it was set to 30 seconds empirically.

2) Feature Reply: shortly after the boot, the controller needs to collect some information about the
network it has to control. To this purpose it sends a feature request message to the connected switch
that, in turn, answer through a feature reply message, announcing what optional features it supports.
Being the first communication between controller and switch, the initialization of flow tables occurs.

3) Packet-in: the first packet of a new flow doesn’t match any rule in the flow tables, thus it is sent
directly to the controller where two kinds of actions are performed: standard packet-in management
and start of the IDS statistics collection. The former relates to the tasks that are usually done by
every SDN controller: the path for the new flow is computed, the needed rules are installed in the
switch, and the first packet is sent back to the sender switch encapsulated in a packet-out message.
The latter is strictly related to “Stats_Manager” application: the unknown flow must be recorded in
the active flows database and the length of the first packet (first_len in Table 1) is stored.

4) Flow removed: if no packet matches a given rule for a specified number of seconds, called idle_-
timeout, the flow is considered ended and the rule is removed from the table. When this occurs, the
switch sends a packet to the controller, containing the statistics of the removed rule, to notify the
event. This is the asynchronous way to collect statistics because it may happen at any time instant,
as it is strictly dependent on the traffic. The controller extracts the flow identifiers and uses them as
indexes to retrieve the specific flow in the active flows database. The measured features (pkt_count,
byte_count, dur_sec, dur_nsec, in Table 1) are immediately saved and the derived features (byte_-
rate, pkt_rate, avg_iat, avg_pl) inferred from the previous ones through simple processing. Finally,
the flow entry is removed from the active flow database and inserted in the ended flow database.

5) Flow stats Reply: as stated before, every 30 seconds the controller asks the switch for the statistics
of the currently active flows. As a reply, the switch sends an OpenFlow packet containing the
statistics of all the flows to the controller, as illustrated in Figure 3. This is the synchronous way to
collect statistics since it is regularly scheduled by the controller. Similarly to the asynchronous case,
every flow identifier is used as an index to look for the flow entry in the active flows database. Once
found, the entry is updated with the new data, before being stored again.

Upon flow stat replies are received at the end of a time window additional processing steps are done by the
classification process, as shown in Figure 4.

All the data related to both active and ended flows are merged to form a unique dataset. The subsequent
processing steps depend on the phase the controller is actually performing.

• Training Phase: received data are added to the training set of the classifier; when enough data are
gathered, they are used to train the classifier. This process produces the classifier’s model as a result,
which is stored and used in the test phase.

• Test Phase: received data are directly addressed to a classifier’s module for the actual classification.
Even though the output of a single flow classification is just a binary label stating ”malware“ or
”normal“, the system produces two different text files as output.
The first one contains the details of all the analyzed flows and reports all the fields of the flow
structure, in Table 1, together with the result of the classification process. Consequently it is possible
to check how the classifier performs for each single flow.
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Figure 3: Flow Stats Reply

The second file contains a general report for every time window, containing the total number of
flows, the number of normal and malware flows, and the usual classification metrics: true positives,
true negatives, false positives, false negatives.

4 USED TRAFFIC

In this paper the traffic considered as malware is composed of a mix of traffic generated by different mal-
wares briefly described in the following:

AlienspyRat: it belongs to the Remote Access Trojan family. Once activated, this software allows collecting
system information, updating and downloading other malware. The malware sends captured information to
the central server and waits to receive commands.

Asprox: is a spam botnet emerged in 2007. It is known for sending mass of phishing emails used in
conjunction with social engineering lures (e.g. booking confirmations, postal-themed spam, etc.). This
botnet arrives as an attachment to spammed messages disguised as notifications from postal companies, as
well as airline booking confirmations.

Cutwail: is a botnet used to generate spam emails using the contacts in address books. The malware receives
instructions from a command and control server about which and how many messages to send. Once it has
completed the task, it sends a full report on the number of sent messages and on any found errors to the
controller.

Darkness: also called Optima, it is a botnet specialized in DDoS attacks. It waits for commands from a
Command and Control (C&C) server that sends encrypted control messages to the infected machines.

Kuluoz: is a botnet aimed at sending phishing emails that simulate messages sent by postal administrations,
combined with the use of social engineering techniques. Furthermore, the control server is able to send
commands to the infected machines to download and execute pay-per-install programs so to ensure gains to
the botnet manager.
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Madness: is a distributed denial of service botnet growing in size and popularity. It infects computers
running Windows and communicates with its command and control server via HTTP by using a simple
client-server model.

Neris: is a botnet that uses an http-based channel to communicate with the C&C server. The main aims of
this malware, after establishing a communication with the C&C, are to send spam and perform click-fraud
by using advertisement services.

Purplehaze: is a botnet targeted to take the control of machines with the aim of using them to generate
many clicks on online advertising sites. It can generate a high volume of traffic on web sites containing
advertisements or links in very short time.

Ramnit: this trojan primarily spreads through a contact with infected removable devices, mainly USB flash
memory. Once installed, this program connects with a remote server via TCP port 443, sending all the
obtained information on the infected machine.

Tbot: is a Trojan that targets older Windows versions in order to open a back door in the system and allow
the attacker to use the machine without the owner’s consent.

ZeroAccess: this Trojan has the main purpose of assuring money to the attacker via pay-per-click advertise-
ment. This tool is able to create a hidden and encrypted file system where it can save its members in total
freedom, as well as all other additional malware that can download.

Zeus: has the main purpose of stealing information related to the bank accounts of the targets by means
of techniques such as man-in the-browser, keystroke logging and form grabbing. The spread of the virus
occurs mainly through drive-by downloads, initiated by mistake from the user, or phishing schemes. There
is a server that acts as a control center from which the commands start.
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Figure 5: Network topology

5 TESTBED AND SCENARIO SETUP

5.1 The network

The network is emulated by means of mininet (Lantz, Heller, and McKeown 2010), an open source program
which allows recreating a realistic virtual network inside a pc. More precisely, it is a network emulation
orchestration system that runs a collection of end-hosts, switches, routers, and links on a single Linux
kernel. It uses lightweight virtualization to make a single system look like a complete network.

Mininet supports the SDN paradigm by implementing its main components: the switches and controller.
Regarding switches, mininet leverages Open v-Switch (Pfaff et al. 2015), an open source, multilayer vir-
tual switch, explicitly designed to enable network automation through programmatic extensions, while still
supporting standard management interfaces and protocols.

Concerning the controller, mininet implements the basic OpenFlow reference controller by default but it is
possible to specify which controller to use at launch time. In our work we set as SDN controller the instance
of Ryu that contains the stats_manager app running on the same machine that emulates the network.

The chosen network topology to perform the simulations is sketched in Figure 5. It consists of two hosts
(h1 and h2) connected to a single SDN switch (S1) that communicate with the SDN controller (C1) through
a dedicated channel.

5.2 Traffic emulation

In order to emulate a real scenario, we merged the flows produced by the malwares described in Section
4 with normal, malware-free traffic. We have captured normal flows by setting a network switch in our
laboratory in port monitoring mode and sniffing all the traffic coming to the switch. Before starting the
actual transmission, some manipulations on the original captured flows are performed with the help of the
Tcpreplay (Turner and Bing 2011) and Wireshark (Combs et al. 2007) command line tools:

• IP addresses was rewritten in such a way that all the packets appear to be exchanged between only
two IP addresses: 10.0.0.1 and 10.0.0.2.

• In order to keep the simulation time reasonable, we cut the longest traces in order to have the same
duration for normal and malware traffic. The duration of our experiments was approximately 2
hours.
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• We divided the 12 malware’s captures in 2 groups of 6 and added one malware-free capture to each
group. In particular, group 1 contained Asprox, Cutwail, Darkness, Madness, Purplehaze, and Zeus;
while group 2 contained Alienspy, Kuluoz, Neris, Ramnit, Tbot, and Zeroaccess.

• All the captured flows of both groups were temporally shifted in order to begin at the same time
instant. Finally, they were merged together in two final pcap files to be used in the emulations.

5.3 The Classifier

Ensemble learning algorithms (e.g. random forest, bagging and boosting) have received an increasing in-
terest because they are more accurate and robust to noise and outliers than single classifiers (Dietterich
2000). The philosophy behind ensembles classifiers is that a set of classifiers performs better than an indi-
vidual classifier. (Breiman 2001) introduced a new and promising classifier in 2001 called Random Forest
that consists of a collection of tree-structured classifiers, each one initialized with an independent identi-
cally distributed random vector x. Random Forest presents many advantages: it runs efficiently on large
databases, it is able to handle thousands of input variables without variable deletion, it is computationally
lighter than other tree ensemble methods. Moreover, Random Forest estimates which variables are more
important in the classification.

We performed a classifier performance evaluation in (Boero et al. 2016) and Random Forest provided the
best performance. It has been used also in the following tests.

When a sample is given as input to the classifier every tree independently decides the class of the
samples Ĉb(x) and casts a unit vote for it. The most voted class is the final output of the classifier
ĈB

r f = mo jorityvote{Ĉb(x)}B
1 .

The implementation of the classifier in python language is taken from the scikit-learn library (Pedregosa
et al. 2011), whose APIs are inserted into Ryu’s code through a wrapper class we wrote for this purpose.

6 RESULTS

Table 2 presents the overall results related to the two groups of malware described in Section 4. When group
2 is tested, group 1 is used in the training phase and viceversa, as shown in Table 2. The indicated values
refer to the percentages of the parameters True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN), and Accuracy (ACC, computed as T P+T N

T F , where T F is the total number of flows).

Table 2: Results of the Simulations

Sim Train Test TP TN FP FN ACC

1 group 1 group 2 0.845 0.987 0.013 0.155 0.887
2 group 2 group 1 0.978 0.964 0.036 0.022 0.972

In this particular application, since the result of the flows’ classification is available for each time window,
we computed an overall value for the aforementioned quantities. For each of them, a weighted average was
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computed as follows:

T P =
∑

T
t=1 T Pt

∑
T
t=1 Fm

t
, T N =

∑
T
t=1 T Nt

∑
T
t=1 Fn

t

FP =
∑

T
t=1 FPt

∑
T
t=1 Fn

t
, FN =

∑
T
t=1 FNt

∑
T
t=1 Fm

t

ACC =
∑

T
t=1 T Pt +T Nt

∑
T
t=1 FT

t

where:

• t is a counter of the time window when the classification takes place.
• T is the last time instant of the simulation.
• T Pt is the number of TP at instant t.
• Fm

t is the number of malware flows at instant t.
• Fn

t is the number of normal flows at instant t.
• FT

t is the total number flows at instant t.

Figure 6: ROC Diagram of Simulation 1 Figure 7: ROC Diagram of Simulation 2

Figures 6 and 7 show the Receiver Operating Characteristic (ROC) curves of the two simulations in Table 2.
The dashed line is the “line of no discrimination” given by a random guess. The graphs show a performance
very close to the ideal one (point (0,1)) in both figures. It means that our designed system reaches a very
high value of correct detections (TP) with a very low probability of false alarms (FP). It is worth remarking
that, in both cases, the classifier is trained with a set of malware flows which is different from the one
employed in the testing phase, i.e. the malware used to test the classifier is not part of the dataset used to
build the model for the Random Forest algorithm during the training phase.

7 CONCLUSION

The implementation of a combined malware detector IDS and SDN system allows simplifying the IDS
design also improving the service offered by an SDN architecture. The paper has presented a possible
implementation of an integrated SDN-IDS Ryu-based controller application devoted to detect the possible
presence of malwares traversing the network. The results obtained through a large simulation campaign
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have demonstrated the effectiveness and robustness of the proposed system, which has reached an accuracy
level ranging from 88 and 97%.

This is a little step forward in the use of an SDN approach that can lead to innovative solutions to manage
and secure networks.
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