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The paper addresses some concepts and issues relevant to the use of satellite imagery, as provided by
the infrared radiometers flying on board geostationary orbiting platforms, in the tracking and pre-
diction of typical mid-latitude Mesoscale Convective Complexes (MCCs) associated with high in-
tensity rainstorms over the Mediterranean area. The predictive content of sequences of Meteosat
half-hourly images is exploited in this work, aiming at the development of storm identification and
cloud tracking procedures suitable for operational use in flash flood forecasting applications. Though
relying essentially on image processing techniques, the cloud tracking approach seems quite useful
in the short term prediction of the dynamics of MCCs as the resolution scale of the temporal
sampling provided by the satellite sensor is short enough to ensure that abrupt changes in the cloud
characteristics are not likely to occur between two subsequent images. Some studies are presented to
show the potential of the procedure and the evidence of strong interactions between the synoptic
atmospheric dynamics and local enhancing factors (e.g. thermal effects and orography) in triggering
convection.

It is concluded that, in the case of small size catchment hydrology, cloud tracking techniques play
a role in supporting the assessment of the risk of flooding, provided that no quantitative rainfall
estimates are addressed, but cloud cover and cloud dynamics parameters are used within a probabi-
listic approach to flood hazard assessment at the regional scale.

I. INTRODUCTION

The potential information content of satellite imagery as obtained from radiom-
eters borne on geostationary orbiting platforms has drawn the attention of the
scientific community since the late 1960s, when the first experimental satellites
(i.e. the Applications Technology Satellites ATS-I and ATS-III) started providing
sequences of images of the Earth and its atmosphere from space. This allowed
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meteorologists to observe the dynamics of cloud systems and cloud texture from
a revolutionary new perspective. The European scientific community has been
widely involved in the exploitation of remotely sensed data since the mid-1970s:
the European Space Agency (ESA) Meteosat Programme was initiated opera-
tionally in 1977 (Mason, 1981).

The information on the reflected radiances and the radiance temperatures of
the top of the clouds, as provided by radiometers operating in the visible (VIS)
and thermal infrared (IR) bands on board geostationary orbiting satellites, has
been used for many different applications including meteorological studies and
flash flood forecasting procedures. Algorithms have been developed in order to
provide empirical estimates of the average rainfall intensities over wide areas
(see D'Souza er al., 1990 for a review of such methods) as well as to identify
and track potentially hazardous cloud systems during their evolution at the syn-
optic scale (Lanza and Conti, 1995). Several methods have been developed to
derive the dynamical parameters related to cloud aggregates with different storm
characteristics (convective storms, tornadoes, etc.).

The use of satellite rainfall estimation algorithms is not often expected to
provide any significant improvement in flood forecasting when the hydrology of
large size catchments and smooth geomorphologic landscapes is operationally
concerned. In this case, indeed, traditional rainfall estimation techniques and
hydrometric warnings should provide the desired accuracy and be quite accept-
able lead times. However, the typical land forms of coastal Mediterranean areas,
characterized by steep slopes and small to medium size catchments (10-100 km?
with a few cases in the 1000 km? class), make traditional flood forecasting
procedures useless in such regions.

The temporal scale of the hydrological response to high intensity rainfall in
the catchments of interest is of the same order of magnitude as the response time
requested by the social environment in order to put in action precautionary
measures in densely urbanized areas (Siccardi, 1996; Lanza and Siccardi, 1995).
As a result, no timely predictions of flooding in the flood prone areas can be
performed without relying on quite accurate forecasts of storm areal coverage
and related rainfall intensities at least a few hours ahead. Remote sensing tech-
nology, and in particular the use of half-hourly IR data from geostationary plat-
forms, allows discrimination of the large scale dynamics of cloud systems still
approaching the target region. The main direction and advection velocity of
Mesoscale Convective Complexes (MCCs) are detectable from the analysis of
sequences of satellite images and the results are extremely useful within the
framework of probabilistic procedures for the assessment of the risk of flooding
at the regional scale and the eventual issuing of distributed warnings (Lanza and
Siccardi, 1994).
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The aim of the present paper is to provide a review of the relevant concepts
and issues associated with the use of cloud tracking using IR imagery for flash
flood forecasting applications. In Section II a preliminary discussion of the
suitability of infrared imagery for quantitative rainfall estimation is presented,
and in Section III, a description of the typical dynamical characteristics of high
intensity rainstorms in the Mediterranean region is given in order to introduce
the analysis of the possible role of cloud tracking within the framework outlined.
A review of the state of the art in cloud tracking procedures using images
surveyed by different radiometers is provided in Section IV so as to form the
basis for the description of methodologies developed within the STORM Project
and for the discussion of prediction capabilities as addressed in Section V. Two
case studies are presented in Section VI, based on satellite observations of real
events, before a critical discussion of the results is given in the conclusions.

The paper describes and discusses a selection of results obtained in the frame-
work of Task 2.4 of the EU Environment Programme project on “Flood Hazard
Control by Multisensor Storm Tracking in the Mediterranean Area”, code named
STORM’93 (Storm Tracking and Observation for Rainfall-Runoff Monitoring).
Integration of the results within the outline of the overall project and operational
issues related to the integration with different sensors are addressed elsewhere in
the companion papers published within the present special issue (see Roth ez al.,
this volume, pp. 23-50 for a detailed overview).

Il. THE USE OF INFRARED IMAGERY FOR QUANTITATIVE
PRECIPITATION FORECASTS (QPF)

The issuing of reliable Quantitative Precipitation Forecasts (QPFs), useful for
flash flood warnings, still remains a major challenge among hydrologists, me-
teorologists and remote sensing scientists. Over the last 20 years, analysis pro-
cedures for satellite images have been proposed in order to perform QPF at the
scale of medium to large size catchments. Lengthy reviews of estimation meth-
ods were made by Barrett and Martin (1981) and Atlas and Thiele (1981): such
methods mostly rely on empirical connections, e.g. the fact that, in the VIS
band, clouds with highest values of reflectivity have the highest rainfall prob-
abilities and in parallel, in the IR band, coldest clouds denote more precipitation-
prone cloud formations.

The uncertainty of such estimates is quite large as no information about the
microphysics of the water phase content of the inner cloud system is detectable
from the images. Moreover, the available techniques provide estimates of what
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is referred to as the “instantaneous” rainfall at the ground. Due to the uncertainty
associated with the indirect methods, these are reliable only at the scale of the
cloud aggregates and always require a set of ground-based observations for
calibration. Such a calibration is in turn affected by the fact that no areal aver-
aged observation of the precipitation process is available at the ground but only
information from a spatial extrapolation of rain-gauge measurements.

As a result, quantitative estimation of rainfall rates at the ground from IR data
makes sense only when the large scale investigation of the precipitation process
is addressed both in space and time, i.e. when the assessment of monthly to
annual precipitation over large regions is concerned for agricultural, climato-
logic or water balance purposes, or over smaller areas and shorter time periods
if surface observations are very sparse. Possible use of IR data for “instanta-
neous” rainfall estimation in flood forecasting should be limited to cases where
the hydrological response of large size catchments is to be predicted for a single
section of a river network, the latter being the outlet of the catchment and the
sole target of the flood forecast.

The application of techniques for the optimal integration of IR satellite infor-
mation and rain-gauge measurements for estimating rainfall patterns on the Arno
River basin (with an upstream area of about 4000 km?” in the critical section
centred on Florence, in central Italy) was recently presented by La Barbera et al.
(1995). The proposed integration techniques are based on the definition of a data
coherence problem and on the application of mathematical programming meth-
ods. Comparisons between the observed hydrographs at the target river section
and simulated hydrographs obtained through a distributed rainfall-runoff model,
using the estimated rainfall patterns as inputs, are addressed for the parametric
tuning of the integration procedure. However, the best results are achieved when
the relative weight of the ground-based information is greater than that of the
satellite rainfall estimates in the optimization algorithm.

As for QPF, the actual prediction content of remotely sensed information from
IR sensors is strongly affected by the spatial and temporal scales of any specific
application and seems to be quite low for small size basin hydrology (10-100
kmz). In this case, indeed, the inner variability of the rainfall field at much finer
scales than the sensor resolution is the major factor governing the probability of
occurrence of flash floods in the different sub-catchments making up the inves-
tigated area as a whole.

Quite a different approach, to be addressed when investigating the orographi-
cally accentuated regions of the Mediterranean area, is that of exploiting the
available information about the observed cloud coverage at the mesoscale in
order to derive estimates of the probability of occurrence of heavy rainfall
events within the framework of the distributed analysis of the risk of flooding at
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the regional scale. This approach was recently proposed by Lanza et al. (1993)
and Lanza and Siccardi (1994). The use of IR images is essential in this context,
both for the identification of convective cloud cover and the tracking of the
spatial and temporal evolution of such clouds approaching the target region.

lll. THE DYNAMICS OF HIGH INTENSITY RAINSTORMS

A very clear definition of the meteorological formations commonly leading to
high intensity rainfall in mid-latitudes is provided by Houze and Hobbs (1982):
“It is quite common for several thunderstorms to be grouped together within a
mesoscale complex, which covers an area one or more orders of magnitude
greater than that covered by an individual thunderstorm. The storms comprising
such a complex typically share a common upper-level cloud shield, which ap-
pears very prominently in satellite imagery when the system matures. Maddox
(1980) has used this fact to define a mid-latitude Mesoscale Convective Complex
(MCC) in terms of the time and space scales of its cirriform cloud top (see Table
1), as it appears in satellite data. Fritsch et al. (1981) indicate that the precipi-
tation falling from an MCC at a given time typically covers a continuous area of
mesoscale dimensions; that is, the individual thunderstorms are embedded in a
larger, mesoscale region of precipitation falling from the cloud shield.”

As for the Mediterranean area, MCCs are usually observed to originate during
the Autumn season, along the edges of atmospheric disturbances associated with
low pressure centres over north-west Europe. They are driven mainly by the
presence of local enhancement factors such as thermal effects or orographic
barriers (Llasat ef al., 1994a, 1994b; Castelli and Corradini, 1994).

TABLE I: Criteria Used to Identify Mid Latitude Mesoscale Convective Complexes in Infrared
Satellite Data*

Physical Characteristics

Size: (A) Cloud shield with continuously low infrared temperature = —32°C must have an
area = 100.000 (km?)
(B) Interior cold cloud region with temperature = —52°C must have an area =
50.000 (km?®)

Initiation: Size definitions (A) and (B) are first satisfied

Duration: Size definitions (A) and (B) must be met for a period = 6 hr

Max extent: Contiguous cold cloud shield (IR temperature = —32°C) reaches maximum size

Shape: Eccentricity (minor axis/major axis) = 0.7 at time of maximum extent

Terminate:  Size definitions (A) and (B) no longer defined

*From Maddox (1980)
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As an example of the occurrence of a typical MCC over the Mediterranean
region, the Meteosat IR image at 1300 GMT of 22 September 1992 (from Lanza
and Conti, 1995) is showed in Figure 1. The image has been zoomed over a
window from 30°N to 60°N and from 20 °W to 30 °E after being georeferenced
and plotted in a latitude-longitude coordinate system; coastlines have also been
superimposed. From a qualitative perspective, it is easy to identify in the picture
at the synoptic scale an extended low pressure field. The MCC was observed to
develop over southern France and later advected towards north-west Italy pro-
ducing heavy rainfall and disastrous flooding along the coastal regions.

As for the evolution characteristics of this kind of meteorological event, again
following Houze and Hobbs (1982) “the dynamics of the development of the
mesoscale circulation of the MCC are not yet well understood; however, some of
their aspects may be surmised from existing observations, as well as from me-
soscale models and by comparing MCCs with tropical cloud clusters. The initial
development is apparently driven by convective heating (which is dominated by
release of latent heat in the convective updraft (Houze, 1982)) associated with
the embedded thunderstorms.”

The results of the meteorological analysis of the most important high rainfall
events in north-eastern Spain observed since 1940 have shown common features
which allow the identification of a general synoptic pattern (Llasat and
Puigcerver, 1994; Llasat er al., 1994a). In recent years this kind of study has
been improved by the use of objective analysis and mesoscale analysis. In the

FIGURE 1 Meteosat IR image at 1300 GMT of 22 September 1992 (from Lanza and Conti, 1995).
(See Colour Plate XXV at the back of the journal).
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first case the location and evolution of the main convective structures is related
with key factors, e.g. Convective Available Potential Energy (CAPE), quasi-
geostrophic forcing, convergence of water vapor and potential instability, which
can be quantified by means of a suitable objective technique (Ramis et al.,
1995). The mesoscale analysis provides information about the factors respon-
sible for both the convection localization and triggering mechanisms.

In a recent work, Llasat er al. (1994a), use cross-fertilized remotely sensed
information and conventional meteorological datasets to identify areas where the
main localization and triggering processes took place within the case studies
analyzed. The superimposition of meteorological maps and satellite images
shows that the occurrence of an MCC is related to the presence of the key
factors selected, and to an intense flow which impinges perpendicularly to the
coast and the nearest mountain regions. These results reflect the extraordinary
role played by the orographic enhancement in triggering convection during the
observed events. After the analysis of heavy storms selected from those ob-
served in the last few years over the Mediterranean area, Boni et al. (1995)
argue that the processing of sequences of satellite images using storm identifi-
cation and cloud tracking techniques shows a strong interaction between the
local orography, the dynamics of the cloud system at the synoptic scale, and the
development of convection.

IV. STATE OF THE ART IN CLOUD TRACKING

The concept of cloud tracking relies on the assumption that the areas presenting
the highest probability of heavy rainfall within the observed cloud system are
actually clustered, so as to reflect the structure of typical MCCs. This means that
the pixels showing the lowest values of radiance temperatures in the IR satellite
images are aggregated in clearly distinguishable clusters which are easily and
automatically identified in each of the images from a sequence, and then tracked,
with reference to some suitable cluster characteristics.

Cloud tracking methodologies were, however, developed to be used with dif-
ferent remote sensing information, mainly provided by meteorological radar and
geostationary satellites, and aimed at different applications. Cloud tracking using
meteorological radar was designed to the real time analysis of rainfall fields
associated with warning systems for tornadoes and severe storms. The useful-
ness of satellite images was originally explored with the aim of detecting cloud
motion vectors, assumed to be representative in some way of the wind fields, for
meteorological modeling and weather forecasting applications. Most recently
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the need for spatially and temporally detailed rainfall forecasts has been pointed
out by hydrologists, especially for sewer management and early warnings for
flash floods. Several authors proposed the use of meteorological radar data for
such purposes (Huff er al., 1980; Bonser and Wong, 1987; Einfalt et al., 1990;
Brémaud and Pointin, 1993). This approach is, however, not suitable when
flash-flood forecasting for early warnings in the Mediterranean coastal regions
of south-west Europe are operationally concerned, for these areas are character-
ized by small-sized river catchments with very fast responses to the heavy rain-
fall events (less than one hour). Early warning systems for such regions call for
reliable predictions of storm evolution over time intervals of at least the same
order of magnitude as that of the population response time to flood warnings
(few hours). The synoptic scale investigation of cloud systems, as provided by
geostationary satellite images, is needed.

The development of cloud tracking algorithms using sequences of satellite
images was addressed by several authors after the first Application Technology
Satellite (ATS-I) was launched in 1966. The suitability of the images for mea-
suring cloud displacements was demonstrated early through the analysis of se-
quences of VIS images, as provided by the Spin Scan Camera System (SSCS)
flying on board ATS-I, in a “closed loop” projection. The main idea was that of
deriving cloud motion vectors from animated sequences, so as to obtain infor-
mation about wind speed and direction, to be used as input parameters for
numerical weather prediction models.

At first, cloud motion vectors were derived by subjective interpretation of the
animated sequences of cloud images through the manual detection of the posi-
tion of each cloud element at the beginning and at the end of the sequence
(Fujita et al., 1968, 1969; Young et al., 1972). It was immediately recognized
that such procedures require a large amount of time to process the data, and were
not free from operator errors, due to the subjectivity of the method: automation
was thus necessary in order to speed up the procedure, using computer capabili-
ties.

Two main methodologies were developed for automated tracking of cloudy
areas: cross correlation and the matching of different cloud entities using geo-
metrical features obtained by different methods. Cross correlation techniques
were initially addressed as providing the simplest ways to estimate motion vec-
tors of corresponding clouds in two subsequent images. The principle consists of
overlying two different images, one observed at time t and another observed at
time t + At (where At is the time interval between two subsequent sampled
images) and searching for the ‘optimum’ shift between the images correspond-
ing to the higher value of the cross-correlation coefficient. The optimal shift is
assumed to represent the displacement of the cloud entity in the time interval At.
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The outline of the procedure detailed below reflects the description of the
method as presented by Leese et al. (1971).

The cross-correlation coefficient represents a measure of the relationship be-
tween the elements of two different sets of quantities. The two-dimensional
cross-correlation is calculated for different lag values between the elements of
two input matrices M, and M, 5, (namely two matrices of grey scale values
representing two subsequent satellite images).

The value at generic lag (i,j) is given by:

Cov(i,j)

0.0+ At

R@,j) =

where:

i,j are the lag values in terms of columns and rows of the input matrices
respectively;

R(i,j) is the sample cross-correlation at lags i and j;

Cov(i,j) is the sample covariance at lags p and q;

o, and o, ,, are the sample standard deviations of the input arrays M, and
M, 5. The coefficients are calculated for values of i and j between the
limits:

~j=i=1

~I=sj=]

obtaining a matrix of values of [R(i,j)]ji::},}.

The displacement vector of the cloud entities from one image to the subse-
quent one is proportional to the location of the maximum correlation coefficient.
Leti and j the lag values so that:

R@G ,j ) = max[R(i,j)]
and the speed and direction of the cloud are given by:

[~ Ax)* + (G~ AY)Z]%

VI =
At

(i_ Ax)
6 = arctan| —
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where:

V| is the speed of the cloud;

0 is the direction (angle between the motion vector and the j direction);

x and y the spatial sampling intervals of columns and rows in the input
picture matrix;

At the sampling time interval of the input matrices.

These equations can be easily implemented within a computer procedure to
calculate automatically cloud motion vectors.

A cross-correlation technique using fast Fourier Transform (FFT) to track
cloud entities within ATS-I images was described by Leese et al. (1970, 1971)
and implemented by Bradford ef al. (1972). The application of FFT was used to
speed up the computation in order to attain suitable procedures for use in a real
time operational system. The method aimed at the estimation of low-level wind
fields. However, the results showed that the method was not able to discriminate
between clouds at different levels and performed bad estimations where high-
level cloud layers were present.

Several authors agree in observing that this method is the simplest and the
least expensive in terms of calculation load, but it is not suitable in the case of
cloud entities presenting rotation, different motions and significant changes in
size and shape, since it basically translates the whole cloud field. For frontal
storms which present a low degree of differential movement these problems may
be negligible but this is not the case when the development of convective activ-
ity due to local orography or thermal effects is concerned (Brémaud and Pointin,
1993; Bonser and Wong, 1987). Current research is directed toward methods
that can take into account the motion features of the cloud systems at different
scales. These methods perform thresholding of the images with selected values
(1.e. fixed radiance temperature values for satellite images in the IR band) and
singling-out potentially hazardous areas within contour boundaries. These areas
are then tracked, performing a match of them between subsequent images (Ku-
mar and Foufoula-Georgiou, 1990). This ‘matching’ approach has the advantage
that different cloud entities can be detected and tracked differently within the
same sequence of images. Another advantage is that the individual cloud areas
can be analyzed, extracting some geometrical features, while they are tracked:
this is of particular interest when the real time forecasting of severe storm
evolution is the main goal of the analysis.

The matching approach has been presented by several authors for the analysis
of radar echoes. The first methods used only the position of the echo centroid as
the geometrical feature able to describe the cloud entities (Barclay and Wilk,
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1970). Further developments involved the use of Fourier series to describe the
contours of the cloud entity (Ostlund, 1974). Matching was assumed when the
echo centroid of an object in a frame fell within the contour of another object in
an adjacent frame. Other techniques were developed to take into account in
some way the distribution of the intensities within the tracked objects, i.e. fitting
to the object a bivariate Gaussian distribution (Wiggert et al., 1976).

The choice of some “brightness centres” (namely the centroids of cloud enti-
ties) to determine cloud motion from sequences of geostationary satellite images
was addressed by Endlich ez al. (1971) and improved by Wolf et al. (1977) while
updating the procedure in order to take into account data from images in the IR
band. The matching was performed by computing a fitting function taking into
account changes in the geometrical features of the objects between subsequent
frames for each pair of centres: the lowest value of the function defines the
optimal matching between them.

Bonser and Wong (1987) compared the performance of several matching pro-
cedures using different geometrical features and concluded that the best shape
descriptor was the mass centroid of the object, probably because “objects are
more likely to have changes in shape and size between frames than they are to
have large displacements.”

In the US an interactive precipitation estimation technique—the Interactive
Flash Flood Analysis (IFFA) technique (Clark and Perkins, 1985; Scofield and
Oliver, 1977)—is an operational method for the real time prediction of heavy
rainfall events of convective origins. This can be assumed to be the only presently
operational technique involving cloud tracking algorithms as, following the de-
scription by D’Souza et al. (1990), “the main part of the operational convective
precipitation estimation technique is based on a decision tree algorithm in which
point rainfall amounts are increased from a base value by empirically derived
amounts depending on the presence of a number of meteorological signatures
assessed from satellite and conventional data sources including approximately 40
items, such as cloud shape, cloud rate of change, cloud lifetime, low-level inflow,
saturated environments and atmospheric moisture, in addition to the original el-
ements of cloud top temperatures, overshooting tops and mergers (Scofield,
1987).” The high number of the parameters involved shows once again that many
techniques lack a deeper physical understanding of the rainfall producing pro-
cesses and basically rely on empirical connections between easily observable pa-
rameters and the associated probability of intense rainfall. Within the STORM
project an improved Hierarchical Objective Procedure (HOP) has been developed
on the basis of the one supporting the IFFA system since 1987 to define areas of
cloud likely to give moderate to high-intensity rainfall over southern and western
Europe (Barnett and Cheng, this volume, pp. 119-150).
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Cloud tracking techniques able to identify and track such cloud entities at the
large mesoscale using IR Meteosat images have been presented by Filice er al.
(1991a, 1991b) and developed by Lanza et al. (1994) and Lanza and Conti
(1995) 1n order to forecast the evolution of the potentially hazardous systems
identified within sequences of images, and to couple such predictions with suit-
able spatial disaggregation models of rainfall fields. Rainfall predictions at finer
spatial scales than those of the Meteosat images (7 X 5 km?” at middle latitudes)
are achieved in this way. Other cloud identification and tracking algorithms were
designed by Braccini ef al. (1991) and Bolla er al. (1995).

In the following sub-sections two typical approaches are described, by which
two different cloud tracking procedures have been derived within the STORM
project: the Contour Filtering Approach and the Shape Parametrization Ap-
proach. Applications of the procedures described to the case studies analyzed are
presented later in Section VI.

A. The Contour Filtering Approach

The first step in this proposed image processing technique concerns thresholding
and relaxation. The goal is that of extracting from a sequence of IR Meteosat
images that portion of the cloud coverage characterized by the highest rainfall
probability. According to the Griffith and Woodley heuristics (Griffith er al.,
1978, Adler et al., 1983), areas with radiance temperatures below a specified
threshold are defined as clouds with a particular empirically derived, mean rain-
fall intensity.

Pre-processing techniques, based on a relaxation method, have been applied
in order to improve the robustness of the thresholding procedure and to obtain
binary matrices from the original grey scale IR images. Relaxation is intended
here as a stochastic process (Rosenfeld and Russel, 1981, Touzani et al., 1988)
that allows us to classify image pixels in two separate classes (cloudy pixels and
background) by taking into account, together with the single pixel value, the
radiance temperature characteristics of the neighbouring pixels. The aim of the
procedure is that of reducing the inherent errors involved in simplex pixel clas-
sification. The output binary image results from removing the isolated cloudy
pixels surrounded by background areas and from filling the small background
areas inside large sets of cloudy pixels. The implemented algorithm involves:

¢ a fixed threshold temperature x is chosen for the observed scenario;

e for a given interval 2d, all pixels with values below (x — d) are classified as
cloudy pixels, while pixels with values above (x + d) are classified as back-
ground;
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e pixels with temperatures ranging between (x — d, x + d) are assigned a
probability of being cloudy pixels or background pixels which is iteratively
updated using the joint probability derived from neighbouring point proper-
ties;

e iterations are performed until the variation of the point probabilities falls
within a fixed range, or simply after a predefined number of steps.

e finally, pixels with probabilities of being cloudy greater than 0.5 are classified
as cloudy pixels, otherwise they are added to the background.

Cloudy pixels, as identified through the relaxation algorithm, are then clus-
tered into fully connected regions (referred to as ‘clusters’ in the following). To
this aim the binary image is scanned from the upper left corner to the lower right
one until some cloudy pixel is encountered. That cloudy pixel necessarily be-
longs to a cluster border and it is used to initialize an edge follower algorithm
that operates according to the Sobel scheme (Sobel, 1978). After the external
cluster border is detected, the cluster is classified as cloud if 90% of the inner
pixels belong to the cloudy pixels set, and is otherwise discarded. The latter case
corresponds to clouds presenting large background areas within the cluster. Ex-
perimental results have shown that such cases rarely occur once relaxation has
been performed. The identified cluster is then removed from the binary image
and the raster scanning is continued until the remaining clusters are all extracted.

Image pre-processing is completed by filtering algorithms, aimed at the
smoothing of cluster contours by means of low-pass operators so as to discard
unessential detailed information which would demand higher computational
loads. The operation is performed over each cluster contour by means of a
simple monodimensional investigation mask slid along the cluster boundary.
The parameters of the low-pass filter are the mask size and the weight of the
central point. In order to have a strong smoothing effect, the weight of the
central point should be low and the mask size wide enough so as to keep up just
the shape of the edge. The operation is performed on the x and y coordinates of
each point along the cloud contour. For instance, by using a mask length of five
units and a central weight F, the new value for the coordinate x at the i-th point
of the edge (X, ,..,) 1S given by the following expression:

L.new

Xi—20id T Xi—10ld T FXigid T Xir1.01d T Xi+2,01d

Xé.new = 4 4

An analogous expression is used to obtain the y coordinate. In Figure 2, the
cluster contour after image processing is depicted: the contour is smoothed, and
the detailed information is lost, while the main edge shape is preserved.
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Alternative filtering methods have been implemented using a low-pass fre-
quency filter. In this case the operation is performed by the Discrete Fourier
Transform (DFT) in the frequency domain rather than directly in the space
domain. Let us suppose we have N samples of a discrete signal x(n) with n =
0,..., N — 1; the k-th value of the DFT of x(n) is:

N-1 .
x(k) = 3 x(n)e? "N k=0,..N-1
n=0

The signal here is the cluster boundary, where the latter will need to be over-
sampled if the number of entries is not a power of two (as needed to implement
frequency filters). By using the expression above the N entries of the DFT signal

are obtained, to be later multiplied by the N entries of the low-pass frequency
filter defined as:

( N
1 0_.k_%(1—0¢)
N ™R - N Nq_ N
F(k)—<2[l Sm[Na(k 2[3)]] 2B(l oc)<k<2B(1+a)
N
! 0 k>£(1+0£)

FIGURE 2 Cluster contour obtained after image processing using the contour filtering approach.
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where k is in the interval (0, N — 1); B allows for the selection of different
cut-off frequencies N/2@3, and a is a classical parameter in low-pass filters. The
entries of the product x(k)F(k) are later anti-transformed so as to obtain the
filtered boundary coordinates in the space domain. The DFT filter allows us to
choose quite accurately the cut-off frequency and the smoothing level of the
filter; the same control is much more roughly performed in filtering procedures
using masks in the space domain. Figure 3 shows an example of a single filtered
cluster, obtained with three different values of B (B=16, 64, and 256 corre-
sponding to k values of the cut-off frequency at 32, 8, and 2 respectively)
together with the original cluster.

A crucial step is now the identification of corresponding clusters in two sub-
sequent images. A single cluster can change position, orientation, and scale from
one image to the next; moreover, it can split, or join other clusters generating
totally different cloud formations. The identification of corresponding clusters is
performed by three different hypotheses: the case of no splitting and joining, the
case of splitting, and the case of joining. In the first case the operation is per-
formed by a variable size rectangle set around the centre of mass of the cluster
in the first image and by searching for any centre of mass in the second image
still falling inside the given rectangle. If more than one centre of mass satisfies
this condition a cost function is evaluated so as to choose the ‘best” correspond-
ing cluster. The cost function includes the distance between the centres of mass
identified and the variation of cluster areas, in the form:

cost= B-\/(xbd- — X)) + (Yo — yb‘i)2 + A-lArea; — Areal

where:

® Xy Xp,. are the x-coordinates of the considered centres of mass in the first
and second image, respectively;

L 2R

FIGURE 3 Example of a cluster filtered using three different values of (=16.64 and 256, corre-
sponding to k values of the cut-off frequency at 32, 8 and 2 respectively) together with the original
one.
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® Yuis Yb; are the y-coordinates of the considered centres of mass in the first and
second 1mage, respectively;

® Area;, Area; are the areas of the considered clusters in the first and second
image, respectively.

Each cluster within the first image is analyzed; if any missed cluster exists, the
case of possible splitting is investigated. The operation is again performed by
setting a rectangle around each cluster in the first image, but now comprising
every pixel of the given cluster instead of being set around the centre of mass.
Centres of mass in the second image are sought inside the rectangle, and all the
possible combinations of those centres are evaluated, selecting the correspond-
ing cluster as the one minimizing the cost function over the permutation process.
Once split clusters have been identified, the analysis is directed to the joined
clusters; this is performed through an analogous algorithm where the reference
rectangle is set on the second image initially.

B. The Shape Parametrization Approach

A much simpler cloud tracking technique based on the shape parametrization
approach uses algorithms for cluster analysis as described by Filice et al.
(1991a) and Filice (1991b); recent developments can be found in Lanza et al.
(1994) and Lanza and Conti (1995). The images provided half hourly by the
Meteosat radiometer in the IR band in the B format have been georeferenced in
the latitude-longitude system and the layout of coastlines has been superim-
posed. A window over the Mediterranean area from 30° to 60° N and from 20°
W to 30° E, has been extracted. In view of the clustering process a large amount
of data, describing for each image the radiance temperature of clouds at low and
middle elevations, is not essential to meet the aim of the analysis. Low and
middle elevation clouds are filtered out from the images, by suitable pre-
processing, in order to speed up the clustering procedure and to avoid too much
noise. Segmentation is performed by means of a fixed threshold, predefined on
the basis of the climatological and meteorological characteristics of the area.
Processed images then show only the highest level portion of the cloud cover-
age, namely the one which is associated with the highest probability of heavy
rainfall. Usually a threshold at 253°K is set at the middle latitudes for precipi-
tating clouds during the Autumn season even if research is now confirming that
fixed thresholds are often too crude to provide best possible results.
Operationally, each pixel x; in a single IR image (only pixels bounded by a
threshold isotherm T, = 253 °K are considered) is associated with a radiance
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value x5;, and two geographical attributes x;;, X,; (Cartesian coordinates). The
set of objects to be clustered is represented by vectors:

5= [xy;5 ijaxg,j] 1= lg sty

where n, is the number of pixels in each image bounded by the given threshold
isotherm. The approach is that of performing a fully automated identification of
the main clusters in each image using algorithms belonging to optimization
methods, namely the K-mean method (Everitt, 1980; Anderberg, 1973). This
simple algorithm consists of the following steps:

(a) begin with any initial configuration of K centroids, or seed points, which act
as initial estimates of the cluster centre: a single seed point is used in most
cases;

(b) allocate each entry x; to the cluster with the nearest seed point, where the
distance is defined as the geometrical distance in the (x;, X,) domain:

d(x;, ¢;) = Ix; — cil i=1,..,Kij=1,...,n

where c; is the i-th seed point;

(c) compute new seed point for i-th cluster as the centre of mass of the entries
currently in the cluster;

(d) iterate the process till convergence, i.e. continue until no data entries change
their cluster membership after the distance test.

The introduction of a reference value d,;,, representing the maximum value for
acceptable distances, allows us to limit the maximum size of a generic cluster,
i.e. pixels with distance exceeding d,;,, are not accepted in the cluster.

The spatial fragmentation of the identified clusters is tested by comparing the
largest of the two principal inertial moments, S;, with the analogue for a rect-
angular shape, of characteristics dimensions 1, and 1,, having the same principal
inertial axis, the same mass (number of clustered pixels) and the same skew ratio
of the figure associated with the cluster:

VS/S, = /L, =

with I; X 1, = n; (number of pixels of i-th cluster). The fragmentation index:

R, = (I, X 1,’/12)/,
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gives a measure of cluster compactness. The parameter R; , introduced as a
reference value, represents the maximum degree of fragmentation allowed in the
identification procedure. If Ry > R; the procedure is stopped, otherwise the
characteristic distance d;,, is reduced by 10% and the procedure iterated. The
identification of each cluster is thus followed by a series of control statements
testing its compactness and taking decisions—at each iteration step—upon
whether to subdivide it in two independent clusters.

The identification of the possible correspondence between clusters identified
in two subsequent images may be done automatically using different techniques.
However in this case the analysis is concentrated over a particular region where
a potentially hazardous cloud system is identified: often only one cluster devel-
ops within that system and if more than one cluster exists, they result from the
splitting of the same initial cluster and will be treated, for the aim of the present
analysis, as a single object.

V. PREDICTION ALGORITHMS

Aiming at the prediction of the future position of a cluster within the contour
filtering approach, some cloud motion model must be assumed. A linear model is
proposed so that the movement of each cloudy pixel x; = (x,,y;) can be de-
scribed as (Charduri and Chatterjee, 1991, Skea ef al., 1993):

x; =d+ Fx,_;

where:

X;_; 1s the position of the pixel at instant i — 1;
X; is the position of the pixel at instant i;

d is the translation vector;

F is the shape matrix.

By using the Polar Decomposition Cauchy theorem, the shape matrix F is writ-
ten as the product between the two matrices R and U:

F=RU

with R € O™ (positive definite) and U € Sym (symmetrical matrixes). From a
physical point of view, the matrix R can be considered as the rotation matrix, i.e.
the matrix which contains the information about the rotation angle, q:
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_ [ cos B sin 6
—sin 6 cos 0

The matrix U can be interpreted as containing the information about cluster
deformation:

Y11 U2
U=
Uy Uy

with u;, = u,;.

The problem is then reduced to the evaluation of the translation vector d and the
matrix F = RU. The vector d is simply computed as the difference between the
centres of mass of the cluster in two consecutive frames while the matrix F is
evaluated through a minimization algorithm based on not-overlapping surfaces.
The estimated parameters associated with the motion and the deformation of the
cloud during the transitions between successive frames can be exploited for an
efficient prediction of the position and the shape of the cluster in the next frame.
The estimation of the parameters of the centre of mass (X, yg), the rotation
angle q and the deformation matrix U = {u,;, u;,, Uy; = U5, U,,} are obtained
using interpolation functions as available data:

e M previous images in successive instants (tg, t;,....tyy—1)
e M values of (x,, y;,) for each cluster

e M — 1 values of q for each cluster

e M — 1 values of U for each cluster

The succession given by the component of the centre of mass of the cluster is
interpolated by a suitable function. Let us consider a number N of functions
Po(t),..., pn—(t) defined in the interval (0, M — 1): these functions are said to be
orthogonal within the given interval if:

M-1

go P(OPy() = 0

for every n — k, and:

M-1 3
20 Pa(OP(D) = ||,



170 R. BOLLA et al.
if n = k, where ||p,|* is the Euclidean norm of p,(t). We can then define an
interpolating function f(t) written as a linear combination of py(t),..., py_;(t):

f(t) = copp(t) + c;py(t) +...+ cy_1Pn—1(D)

in which the coefficients c,..., cy_, are unknown and depend on the set of
chosen functions and on the observed parameters. It is easy to demonstrate that:

M-1

26 f(Hp,(t)

n

Pl

Under the assumption that all the parameters to predict have little variation in
time, smooth orthogonal functions, such as polynomials, may be used: this
choice offers a further advantage because of the existence of a simple recursive
formula to determine the desired number of functions. It can be shown that:

Po(H) =1
M-1

Pl = 1= =5

”pn—]”2 D (t)
n—2
[jo

pn(t) = pl(t)pn—l(t) o

If the number M of points in which these functions are defined is equal to the
number N of the functions themselves, an exact solution is obtained, i.e. the
function f(t) exactly passes through the samples. If M is greater than N an
approximate solution is obtained (least squares solution).

As pointed out in the previous paragraphs, what we call ‘cluster’ is actually an
area of cloudy sky characterized by the highest probability of heavy rainfall. On
the basis of the assumption that what we identify in the infrared Meteosat im-
ages is not a well defined physical entity but rather the result of several different
constraints acting on an evolving meteorological scenario, the following consid-
eration of the meaning of the tracking of such an entity is necessary: the traditional
approach to the analysis of the dynamics of cloud systems by establishing the
correspondence among a selected set of cluster points in two successive images
by means of some correlation matrix becomes unsuitable when it is accepted
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that no physical correspondence between these points actually exists. Neverthe-
less some kind of regularity in the successive locations and in the evolution of
segmented clusters in the Meteosat images has been recognized.

In the shape parametrization approach the analysis of the evolution in time of
some cluster parameters defining a very general shape able to represent the area
of highest probability of heavy precipitation in each single image is addressed.
The elliptical shape has been chosen in this work because of its simplicity,
adaptability and good approximation of the observable cluster shapes. In order
to obtain a suitable equivalent elliptical shape the following procedure has been
applied:

(a) estimate the mass of the cluster as given by the image processing procedure
described in the previous section: this quantity just corresponds to the num-
ber of pixels characterized by a brightness temperature above a fixed thresh-
old and belonging to the cluster (the term “mass™ must not lead to any
confusion, as no estimates of the cloud structure are addressed on the basis
of the distribution of the radiance temperatures within the cluster);

(b) estimate the spatial coordinates of the centroid (centre of mass) of the clus-
ter;

(c) estimate the principal inertial moments of the cluster area and the angle
formed by the principal axis in the east-west direction;

(d) estimate the principal inertial radius.

The elliptical equivalent shape is defined as the elliptical shape which presents
the centre coincident to the cluster centroid, the same direction of the principal
axes and the same principal inertial radius. In order to avoid ambiguities with
the definition of the rotation angle of the ellipse with respect to the E-W direc-
tion, the following criterion has been used: once the rotation angle of a given
equivalent ellipse has been defined by the rotation angle of the major (minor)
axis, the rotation angle 3 of the cluster in the following image is the nearest to
a, independently of the axis to which it is actually referring. The analysis of
results emphasizes that the change of the rotation angle from that corresponding
to the major axis to that corresponding to the minor axis, or vice versa, takes
place only in those cases where the two axes are very similar in length and,
being the ellipse very near to a circular shape, the position of the two axes
becomes meaningless in practice.

In order to evaluate the potential of tracking the parameters of the elliptical
equivalent shape, two different procedures have been used, namely the predic-
tion over a lead time of half an hour and one hour respectively. In the first case
the parameters, i.e. the principal axis, rotation angle and location of the centroid,
are predicted by a linear auto-regressive procedure on the last four available
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images. Forecasting over a lead time of two time steps is performed using a
linear autoregressive method on the last three available images and on the pa-
rameters derived from the one step forecast as previously obtained. Appropriate
filtering has been introduced in order to take account of possible missing im-
ages. The analysis of cloud tracking in the parameter space, and the performance
of the forecasting procedure, has been carried out on the basis of the two case
studies described in the following section.

VI. CASE STUDIES

With the aim of discussing results of the application of the described cloud
tracking techniques two specific case studies have been selected from several
observed and analyzed during the STORM 93 research activity. In both cases
the evolution of the events was quite stable and the main convective structure,
identified by the area of coldest cloud top temperatures, was clearly clustered
giving a chance for a fruitful application of the cloud tracking techniques de-
scribed above. The IR images from the Meteosat geostationary platform have
been processed thus for both cases in order to define suitable cluster character-
istics needed for eventual tracking.

The prediction procedure based on the contour filtering approach has been
applied to the sequence of three satellite images shown in Figure 4 for the
meteorological scenario observed from 0800 GMT to 0900 GMT of 12 June,
1994. Figures 5 and 6 show the predicted images at one step and two steps
forward respectively, together with the cluster actually observed by the satellite
for the current time step.

In Figure 7 the path of the observed and predicted rotation angles for the same
sequence 1s plotted versus time; the predicted value is close to the observed one,
especially in the one step prediction. The same considerations apply to the
analysis of the path of the deformation parameter u,,, plotted in Figure 8.

FIGURE 4 Clusters obtained from the sequence of satellite images from 0800 to 0900 GMT of 12
June, 1994.
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FIGURE 5 Cluster predicted one step ahead (left) and the actually observed one (right).

It 1s easily detectable from the inspection of the figures that the shape of the
predicted cluster does not differ much from the actual observed shape; even
small scale details are preserved and the little differences that can be noted
derive from the linear model used to describe the motion and the deformation of
a cloud. The utilization of a simplified linear model agrees with the original
assumption of cloud tracking, where the timing of the satellite sampling is
assumed to be frequent enough to ensure that noticeable abrupt changes in the
cluster characteristics are not likely to occur between each image and the sub-
sequent one. The above remarks are, however, limited to the analysis of the
single case study and still need to be confirmed through a wider application to a
large number of cloud cluster sequences.

From the hydrometeorological perspective the prediction of small scale de-
tails could be useless due to the large uncertainties associated with QPF within
the predicted cloud coverage. Nevertheless the contour filtering approach can be
suitably tuned in order to preserve the requested level of information detail by
choosing a proper cut-off frequency during the filtering phase.

FIGURE 6 Cluster predicted two steps ahead (left) and the actually observed one (right).
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FIGURE 7 Evolution of the observed and predicted rotation angles for the sequence depicted in
Figures 4 to 6.

The second case study was investigated using the shape parametrization ap-
proach, assuming that small scale details would have to be discarded because
they would comprise deterministic constraints with very large uncertainties yet
no physical basis if the probabilistic approach to distributed warnings using
cloud tracking results as proposed by Lanza and Siccardi (1994) was followed.
Heavy rainfall occurred on 27 and 28 September 1992 over the northern Medi-
terranean area and was responsible for the occurrence of flooding within the
urban area of the city of Genova, Italy and the nearby catchments. The MCC
originated in this case over southern France as the result of the presence of a
large atmospheric low extending from the Bay of Biscay to the Balearic Islands.
This had an associated major frontal system moving rapidly towards the east.
The Liguria region of Italy was covered by the main convective structure from
the morning of 27 September to the morning of 28 September. The core of the
event was later located over the Tyrrhenian Sea and the convective cell reached
southern Italy before definitive dissolution. A sample from the sequence of half-
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FIGURE 8 Evolution of the observed and predicted deformation parameter u,, for the sequence
depicted in Figures 4 to 6.

hourly Meteosat images in the IR band for this event is shown in Figures 9a, b,
together with the isolated clusters, from 1900 GMT to 2300 GMT of 27 Sep-
tember 1992.

The output of the cloud tracking procedure is summarized in Figures 10a and
b. Note that, in Figure 10a, the centre of mass shows a quite irregular path
compared with the quite stable evolution of the whole system. This is due to the
physical nature of the entity we are actually tracking, for in each image the
cluster is a different object with a quite independent shape and areal coverage.
The observed path is thus the result of the superposition of two main atmo-
spheric components: the overall dynamics of the system (quite stable in both
cases) and the variability of the location of the centre of mass which is mainly a
function of the modifications in shape. This is easily detectable by comparing
the graphs in Figures 10a and b: the most significant changes in the location of
the centre of mass correspond to the largest variations in the cluster areal cov-
erage. The high variability in shape is due to the growth or dissolution of dif-
ferent small scale formations within the cluster, resulting from the turbulent
nature of the convection mechanisms which have generated the cluster as ob-
served by the satellite sensor.
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58391 a5 §3271 a6

FIGURE 9a Sequence of half-hourly Meteosat images in the IR band from 1900 GMT to 2300
GMT of 27 September 1992. (See Colour Plate XXVI at the back of the journal).

By analyzing the evolution path of the main cluster in relation to the outline
of the orographic barrier in the region (the Apennines), rising almost parallel to
the Italian coastline of the Tyrrhenian Sea, it appears quite evident that the
evolution itself is strongly driven by the orography. Such a qualitative observa-
tion is confirmed by the graph of Figure 11 (from Conti ef al. 1994), where the
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FIGURE 9b Cluster identification for the sequence of half-hourly Meteosat images in the IR band
from 1900 GMT to 2300 GMT of 27 September 1992. (See Colour Plate XXVII at the back of the

journal).

path of the cluster centroid in the second event is plotted in a latitude-longitude
coordinate system, together with the outline of the main orographic barrier in the

region.
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FIGURE 10 Evolution in time of the cluster in terms of path of the centre of mass (a) and path of
the number of clustered pixels (b) and predictions at one step in advance from 0130 GMT to 2330
GMT of 27 September.

Vil. CONCLUSIONS

A degree of caution should be placed on the interpretation of the results of the
cloud tracking procedures presented above, as the technique involved has no
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FIGURE 11 Evolution of the main cluster-path of the centre of mass and outline of the main
orographic barrier (from Conti ef al. 1994).

physical basis: the “entity” which is tracked is not actually an individual cloud
moving in space from one image to the subsequent one. In fact, in the case of
MCCs, the observed coldest top of the cloud system is the result of some
convective activity originated by the interaction between several meteorological
forcing factors which are not taken into account by any presently available cloud
tracking procedure.

Though relying essentially on image processing techniques, the approach of
cloud tracking using satellite data seems quite useful for the short term predic-
tion of the dynamics of MCCs because the resolution scale of the temporal
sampling provided by the satellite sensor is short enough to ensure that notice-
able abrupt changes in the cluster characteristics are not likely to occur between
two subsequent images.

However, the operational application of storm identification and cloud track-
ing techniques is strongly affected by the need for a better physical understand-
ing of the processes involved. The next step in the development of satellite
based prediction procedures is that of conceptually and operationally coupling
the image processing component with some meteorological model able to con-
vey the extrapolation of the observed cluster behavior towards the most probable
mesoscale scenario. For this, traditional meteorological observations would be
needed in real time at a suitable resolution. Certainly influence of local enhanc-
ing factors (e.g. orography and thermal anomalies) is significant in driving the
dynamics of the cloud entities at the mesoscale.
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Most of the available applications of some interdisciplinary approach to the
analysis of severe storm events over the Mediterranean area (e.g. Llasat et al.,
1994b; Castelli and Lanza, 1994) relate to individual cases, where the relative
contributions of different triggering mechanisms at the synoptic scale are not
easily detectable against the contribution of possible local enhancing factors. On
the other hand, typical meteorological scenarios which are likely to produce
heavy rainfall of convective origins do present some common features and quite
similar behaviours (Llasat and Puigcerver, 1994), and call for a larger investi-
gation over a set of suitable case studies.

The analysis of further case studies of extreme events developing during the
Autumn season within the Mediterranean area is obviously expected to provide
a better understanding of the typical dynamical characteristics of MCCs as ob-
served by conventional and remote sensing monitoring tools. Meanwhile, the
use of cloud tracking techniques has been shown to increase the understanding
of the overall dynamics of the observed events in the diagnosis stage: the de-
velopment of prediction techniques based on such improved understanding will
possibly lead to a wider use of IR satellite imagery for prognosis, especially in
operational flash flood forecasting applications.
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COLOUR PLATE XXV

FIGURE 1 Meteosat IR image at 1300 GMT of 22 September 1992 (from Lanza and Conti, 1995).
(See page 156).
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COLOUR PLATE XXVI

FIGURE 9a Sequence of half-hourly Meteosat images in the IR band from 1900 GMT to 2300
GMT of 27 September 1992. (See page 176).
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COLOUR PLATE XXVII

FIGURE 9b Cluster identification for the sequence of half-hourly Meteosat images in the IR band
from 1900 GMT to 2300 GMT of 27 September 1992. (See page 177).



