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Abstract—Anomaly detection is an important issue heavily
investigated within different research areas and application
domains. Its application in the industrial systems sector may be
essential also for the protection of critical infrastructures. Due
to the huge amount of involved data and to their complexity
the use of machine learning may be the clue. The basic idea
is describing an industrial process by a series of key attributes
whose measures (the features) compose a state vector including
heterogeneous types of measurements. Each feature should be
a key attribute which can help discriminate between a normal
functioning condition and an anomaly. In this context, the paper
presents the use of a deep neural network architecture called
autoencoder to detect anomalies due to either system faults
or cyberattacks. The chosen application field is a photovoltaic
system connected to the grid. The results, even if preliminary,
are really promising.

Index Terms—anomaly detection, industrial systems, neural
networks

I. INTRODUCTION

Under the pressure of environmental problems, the electrical
grid is moving toward a large use of renewable energy sources
(RES). Because of the uncertainty of RESs energy production
and the high scalability of some solutions (like solar panel),
the electrical grid needs to change paradigm from a centralized
way to produce energy to a more distributed one. Distributed
energy resources (DER) usually refers to a small-scale unit of
power generation that is connected to a larger power grid at
the distribution level. These may include solar panels, batteries
and other storage systems, micro-turbines often cogenerative,
and so on. However, the large use of DER brings many prob-
lems to the grid. One of the main concerns is related to security
[1] [2] [3] [4]: DER are automated systems often connected by
a telecommunication network to a control system, for exam-
ple a Supervisory Control and Data Acquisition (SCADA),
in order to coordinate the energy production between the
sources. In this context, common communication protocols are
Modbus, DNP3 and IEC 61850. All these protocols present
severe security issues and fail to ensure the integrity and
confidentiality of the communication because of the lack of
encryption [5] [6]. DERs can produce a lot of information
regarding its working conditions, which has to be monitored
by human experts. However, given the complexity of these

systems and the high number of plants to monitor, an anomaly
detection system that can mimic the human behaviour is a very
important issue to manage the grid. The paper is structured as
follows. The next section reports a short review of the state of
the art concerning anomaly detection applied over industrial
systems. Section III describes the methodology and the main
idea which this paper is based on: the use of a deep neural
network architecture called autoencoder to detect anomalies
due to either faults or cyberattacks. Section IV considers the
example of a photovoltaic system and applies the designed
autoencoder scheme to it. Section V contains a preliminary
performance evaluation and Section VI the conclusions.

II. STATE OF THE ART

Anomaly detection is an important issue that has been
investigated within different research areas and application
domains [7]. The action aimed at identifying all the behaviors
that differ in some way from the normal one is usually
called novelty detection or outlier detection [8] [9], for which
[10] and [11] propose different autoencoder architectures and
[12] suggest a one-class neural network model. Different ML
solutions have been investigated to identify faults in power
generation systems: in [13] a k-nn supervised algorithm is used
to identify faults in the direct-current portion of a solar power
plant composed by many arrays. A Support Vector Machine
(SVM) classification algorithm is used in [14] to detect faults
in Power Generation Systems Based on Solid Oxide Fuel
Cells. Artificial Neural Networks (ANN) are applied in [15]
in order to identify malicious control of DERs in a grid with
high penetration of photovoltaic (PV) generators. An artificial
neural network is used in [16] to solve a regression problem
in order to predict the power produced by a photovoltaic
plant and detect anomalies. [17] introduces an autoencoder
architecture to discriminate between fault conditions in an
electric motor and make a comparison with a One Class
Support Vector Machine classifier.

III. METHODOLOGY

A. Machine learning overview

Lets consider a portion of an automated industrial pro-
cess, for which we have different type of measured key
features. The aim is to describe the functioning of the process
by this group of key features. The features measurements978-1-7281-3729-2/19/$31.00 2019 IEEE



x1(t), x2(t)...xn(t) are collected so to build the vector shown
in (1) at each sampling time t. (1) is called state vector and
each element of the vector is a feature.

X(t) = {x1(t), x2(t)...xn(t)} (1)

The vector can include heterogeneous type of measurements:
physical measurements from the process, environmental mea-
surements, parameters of the telecommunication network, and
so on. Each feature should be a key attribute which can help
discriminate between a normal functioning condition and an
anomaly. An anomaly can be defined into different ways: it
could be the fault of a component or of a sensor, or be caused
by a malicious manumission. Regardless of the cause, the
anomaly is defined here as an undesired working condition of
the physical process. A cyber attack that targets a system like
an industrial process ”translates” into a bad working condition:
the purpose of the proposed algorithm is to automatically
detect it by observing the vector (1) that describes the physical
behaviour.

Many scientific works focus on the dynamic state estima-
tion to detect anomalies by implementing the equations that
describe the system and by choosing a threshold for the error
between estimated and measured parameters. The application
of such type of approach may have some drawbacks:

• It requires to know the exact behaviour of the system,
which means to know the exact parameters of the equa-
tions.

• It could be very hard to write a closed-form equation
which takes into account heterogeneous types of mea-
surements.

• It requires a customized design.

Machine learning approaches could be useful to face up
such type of problems. Traditionally, anomaly detection is
considered as a ML classification problem: intrusion detection
is a solid field of research in which large datasets containing
normal and abnormal examples of behavior are collected and
used to train a classification algorithm. Usual algorithms are
linear algorithms (like logistic regression and support vector
machine), decision trees, instance based or lazy algorithms
(like k-nearest neighbour), or deep neural networks. The main
problem of these approaches in the field of physical behaviour-
related anomaly detection is to find appropriate datasets. It is
really difficult to dispose of labeled datasets of faults, even
more difficult to have labeled datasets of bad behaviors if
the anomaly is caused by a cyber attack. A solution may be
simulating different types of faults, but it is hard to forecast
all of the possible bad operating conditions. Another type of
solution is represented by the regression problem: first we
choose some target variables to monitor, then we define a
threshold for the error on the forecasted values. If the error
exceeds the threshold, then we report the anomaly. The main
drawback of this solution is that we have to choose a limited
number of features as output.

Fig. 1. Training phase

Fig. 2. Test phase

B. Autoencoders

The proposed solution uses a deep neural network ar-
chitecture called autoencoder. Autoencoders are a type of
unsupervised learning algorithms in which the neural network
learns to reconstruct its input: trained the NN with the normal
behavior, we expect that the network reconstructs abnormal
data with an higher error and normal data with a lower error;
in this way, we can use the magnitude of the error to classify
new data. So, the anomaly detection algorithm is composed of
two phases: in the training phase, shown in Fig. 1, the network
is trained with only normal behavior data; after the training
phase, we set the threshold for the error between the input
and the output of the autoencoder. Then, in the test phase,
in Fig. 2, we provide the neural network with unlabeled data
and the error is calculated: data are classified as abnormal
if the error exceeds the threshold. In detail, we call xTR(t)
the input vector of time t of the train dataset and x̃TR(t) the
reconstructed vector; we define the error as in (2)

eTR(t) =
∥∥xTR(t)− x̃TR(t)

∥∥ (2)

Evaluating the mean eTR(t) of the training dataset, we empir-
ically set the threshold E. Then we evaluate the error on the
test dataset as in (3)

e(t) = ‖x(t)− x̃(t)‖ (3)

if e(t) exceeds E, the sample is classified as anomalous,
otherwise as normal.

IV. APPLICATION

A. Case study overview

Lets consider a typical scheme of a photovoltaic systems
shown in Fig. 3, composed of: solar panels, DC/DC con-
verter (usually a booster converter) that is controlled by the
Maximum Power Point Tracking (MPPT) algorithm, DC link,
and finally Current-source inverter connected to the grid. We
categorize all the collectible information in five groups:



Fig. 3. Photovoltaic System

• Alternated Current (AC) side electrical information: ac-
tive and reactive power, voltages (Root Mean Square,
RMS), currents (RMS), frequencies, total harmonic dis-
tortion (THD)

• Direct Current (DC) side electrical information: voltages
and currents

• PV information: voltage, current, temperature of the cells
• Environmental information: irradiance, temperature of the

air
• Electronic information: maximum power point, dc/dc

converter dutycycle

We expect that the anomaly detection algorithm learn the
correlation between the physical parameters; for example, we
expect a correlation between the measured irradiance and the
AC-side currents, even if it would be difficult to write an
equation in a closed form. We collect all information at a
certain time so to create the state vector (1). The state vector
is then sent to the anomaly detection algorithm.

x1 Irradiance: the solar irradiance hitting the panel
x2 T air: the temperature of the environment
x3 T pv: the temperature of the PV’s cells
x4 V pv: the voltage measured at the terminals of the panel
x5 I pv: the current emitted by the panel
x6 V dc: the voltage measured at the DC link
x7 I c: the average current in the DC capacitor
x8 δ: the dutycycle of the DC/DC converter
x9 V a: the voltage of phase a (AC side)
x10 V b: the voltage of phase b (AC side)
x11 V c: the voltage of phase c (AC side)
x12 I a: the current of phase a
x13 I b: the current of phase b
x14 I c: the current of phase c
x15 f a: the frequency of phase a
x16 f b: the frequency of phase b
x17 f c: the frequency of phase c
x18 THD a: the total harmonic distortion of the voltage on phase a
x19 THD b: the total harmonic distortion of the voltage on phase b
x20 THD c: the total harmonic distortion of the voltage on phase c
x21 Q: the reactive power emitted by the inverter
x22 P: the active power emitted by the inverter

TABLE I
STATE VECTOR

B. Anomaly model

Photovoltaic systems are prone to different types of faults
[18] [19]. While electrical faults like short circuits must
be considered by electrical protections, there are different
problems that produce a degradation of the performances, like
partial shading faults, open-circuits faults, soiling and so on.
Moreover, aging of the cells translate into a loss of efficiency.
There are different types of techniques to detect such type of

faults; our work proposes a different approach based on the
automatic analysis of data generated by DERs.

DERs are prone to different cyber attacks as well. As
mentioned, the lack of security of many industrial protocols
leads to the risk of man-in-the-middle attacks following a
breach in the perimeter defense. However, the attacks can
come not only from the network: components can run a
malicious firmware caused by insiders, receive supply chain
attacks or even be victim of human errors. All these threats
translate into abnormal physical working conditions.

V. PERFORMANCE EVALUATION

In order to preliminary validate the proposed scheme, we
set up a simulation environment with of a photovoltaic system
connected to the grid by using MATLAB/Simulink, as shown
in Fig. 4. The electrical model is electromagnetic and includes
the simulation of the heat exchange with the environment
and the control system of the electrical converters. We run
the simulations for different working conditions and extract
the features as shown in Table I. Each samples contains 22
features, which comprehend electrical data, thermal data and
the DC/DC converter’s dutycycle, as detailed above.

Acquired data are then divided into two parts: the first one
is used to train the autoencoder while the second one is used
to test it. We define two types of anomalies:

• data corruption
• bad physical behavior

In order to simulate a bad data injection or a sensor fault, the
value of one data for each sample is modified in order to create
a physically impossible/anomalous state vector; for example,
keeping the same current and voltage values, injected power
is modified. Bad physical behavior is obtained by corrupting
the control system of the electrical converters: for example we
add a bias in the MPPT algorithm in order to make the PV
work at a lower voltage than the maximum power point.

Then we pre-process the data: because of the different scale
and variation range of each feature, applying MSE to raw
data would produce biased results. So, we firstly normalize the
dataset: we calculate the average and the standard deviation
for each feature on the test dataset, then we apply (4):

(xi(t)− x̄i)
σi

(4)

Where x̄i is the average value and σi is the standard deviation
over the training dataset of the i-th feature.

Finally we set up the anomaly detection algorithm. The first
part is represented by a shallow autoencoder on MATLAB
deep learning toolbox. We set the dimension of the hidden
layer at 16. Then we evaluate the mean square error between
the real and predicted data on the training dataset and we set
the threshold heuristically to classify new data. The overall
accuracy is 79.71%. The confusion matrix is reported in Table
II, with the threshold set to 0.06.

Changing the threshold in a small range has no evident im-
pact on the overall accuracy but the confusion matrix changes
significantly: when changing the threshold False Positives



Fig. 4. Simulation environment in Simulink

Real class

Classified as
Normal Anomaly

Normal 0.245 0.030
Anomaly 0.172 0.552

TABLE II
CONFUSION MATRIX

increases while False Negative decreases, or vice versa. The
size of the hidden layer influences the results: a size between
18 and 10 produces similar results, while out of this range
accuracy decreases.

VI. CONCLUSIONS

Machine learning algorithms may be fundamental tools to
improve the security level of automated systems. In particular,
deep autoencoders could be really useful to build physical
behaviour-related anomaly detection schemes, thanks to their
capability to learn the links between heterogeneous physical
parameters. Distributed energy resources can be a good field
of application because of the huge amount and complexity of
data. It will be worth investigating different types of autoen-
coding architectures like fully-connected deep architectures,
convolutional and recurrent neural network autoencoders.
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