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SUMMARY

Heart failure is a chronic disease that alternates intense and weak phases and requires repeated and frequent
hospital treatments. The use of automatic instruments for a remote and ubiquitous monitoring of biological
parameters relevant to heart failure pathophysiology offers new perspectives to improve the patients’ quality
of life and the efficacy of the treatment.
The platform described in this paper represents an implementation of an automatic remote monitoring tool

where smartphones play a crucial role. They are not employed just to communicate through traditional client-
server applications and they are not only the hub of information sent by sensors, but they also act as intelligent
processors and autonomous sensors of the patients’ motion through a high-accuracy activity recognition algo-
rithm. The proposed platform combines the evolution of health systems and the consequent needs of modern tele-
medicine with the current context-aware capability of recent smartphones, obtained by implementing specific
algorithmic solutions, and with the anything, anytime, and anywhere communication capability of the pervasive
communications paradigm. Performance evaluation focuses on the accuracy of the activity recognition estima-
tion, on its applicability to real life, and on the data exchange between smartphones and medical server, allowing
to envisage the potential of the designed platform. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Modern telemedicine

Telemedicine applications provide healthcare services through information and communications tech-
nologies overcoming the geographical separation of patients and providers [1] and may be structured
into three categories: televisits, to conduct patient examinations from remote sites; teleconsults, to pro-
vide remote medical consults; and telemonitoring, where patient’s vital clinical data are collected and
transmitted from home, streets, and other locations, to remote medical centers. Telemonitoring is
widely used and is beneficial for chronic diseases such as diabetes, heart failure (HF), and chronic ob-
structive pulmonary disease. It represents the framework in which this paper is developed.
Modern telemedicine includes the ability to provide medical services throughwireless devices and is

the result of the evolution of two systems [2], Health and Technology. Health needs telemedicine for
economic and efficiency reasons, and technology offers the tools: sensors, telecommunications
networks, mobile phones, and smartphones. Solutions have been recently developed to control obesity
through mobile applications [3], to monitor the biological activity of an individual [4], and to detect
possible falls of elderly and ill people [5, 6].
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The paradigm of pervasive computing [7], also called ubiquitous computing, is a model of human-
machine interaction where computing and processing power is totally integrated in everyday objects
and activities and considers seamless, intuitive accesses [8]. These objects can communicate with each
other and with other components, thus forming a pervasive/ubiquitous network. The idea, perfectly
focused in [9], is to sense physical quantities, which present a wide set of input modalities (vibrations,
heat, light, pressure, magnetic fields, and so on) through sensors, and to transmit them over suitable
seamless communication networks with the goal of gathering information and supporting decision
and control processes and authentication [10]. Historically, the concept of ubiquitous computing and
networking was introduced by Mark Weiser and is described in [7], which presents a world where
sensors and digital information are an integral part of everyday life. The resulting scenario involves
the complete immersion of people in a telecommunication network that allows sending and receiving
digital information from the surrounding physical world and unconsciously interacting with it. Modern
telemedicine and telemonitoring is quite close to Weiser’s vision and represents a real implementation
of pervasive computing where anything may be connected anytime and anywhere.

1.2. Structure of a modern telemonitoring platform

A person-centered modern telemonitoring platform may be structured into four essential elements [11]:
(i) people who need to be monitored (regarding, for example, vital physical quantities such as temper-
ature, cholesterol, blood pressure and sugar level, heart rate, and weight, but also motion and activity);
(ii) sensors/devices/systems actually measuring physical quantities, motion, and activity, such as ther-
mometers, cholesterol test kits, blood pressure cuffs, glucose meters, weighting scales, and electronic
vests composed of groups of sensors, as done for the ElectroCardioGrams (ECG)—shirt with dry elec-
trodes woven into the plastic fibers, described in [12]—and for MyHeart Project summarized in [13];
(iii) hubs, which collect the measurements and send them to the final destinations through telecommu-
nication networks; they may be personal computers, laptops, mobile phones, and smartphones; (iv) final
destinations, such as physicians and other health care providers, disease management services, and
family care givers. The mentioned four elements should be integrated with a telecommunication net-
work connecting hubs to final destinations, also considering the interoperability issue, widely discussed
in [11]. The communication scheme of a modern telemonitoring platform is shown in Figure 1.

1.3. A new role for smartphones

Smartphones can play an important role in future telemonitoring for health. The hub role of smartphones
and mobile phones, mentioned earlier and employed in many real systems as indicated in [11], in the
Phmon research project [14], led by the Institut für Technik der Informationsverarbeitung at the
Universität Karlsruhe, in [15] and [16], among the others, simplifies both the acceptance of the system
by the patients and, technologically, the sensor connection and the forwarding of measurements to the
interworking network. In more detail, enhancing the role of personal phones in health telemonitoring

Figure 1. Example of communication system of a person-centered telemedicine platform.
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platforms should increase the role of patients driving care coordination and being part of the care plan-
ning process [11]. From the technical viewpoint, one of the open problems of real telemonitoring systems
is interoperability, both between devices and hub and between hub and final destinations. Mobile phones
and smartphones are already integrated within an extensively tested telecommunication network for data
and voice transmission [17] and, in many cases, already provide the necessary interfaces to connect to
devices. Moreover, Internet-connected smartphones are increasingly present in people’s pockets and
homes [1]. In consequence, the great expansion of cellular communication networks can solve many
problems concerning connectivity coverage. Beyond connectivity, Pecchia et al. [18] outlined three other
critical factors for telemonitoring platforms: usability, quality of transmitted data, and interference with
other devices. Even without completely solving all such issues, smartphones represent a suitable
solution. Their usability has made them extremely widespread and the technical solutions they employ
to assure data and voice transmission provide both data integrity and robustness to interference.
The idea carried on in this paper is to give smartphone a new additional role: not only hub but ‘hub +

sensor + processor’. The idea of having a ‘hub+ sensor’ capability is not totally new: Sarasohn-Kahn
[2] stated that

Sensor technologies combined with mobile communications can be used to track various health
measurements for patients and loved ones. Among a long list of sensors that can be incorporated
into smartphones and used for health monitoring are: accelerometers that register different
motions and walking ’gait’; infrared photo-detectors that measure body temperature, heat flux
and heart rate; glucometers to measure blood glucose.

Boulos et al. [16] stresses the same concept.

This paper reasserts these ideas, adds the processing function to the smartphones, and describes a
practical implementation of a technological platform, designed for remote health telemonitoring for
HF, which is studied, implemented, and extensively tested by the authors of this paper, for now only
from the technical, not medical, viewpoint, in which smartphones have a central ‘hub + sensor +
processor’ role. Suh et al. [19] proposed an architecture, called WANDA, which implements sim-
ilar functions for patients suffering from HF, although the activity recognition algorithm is different,
as highlighted in the remainder of this paper.
The implemented telehealth platform is composed of a peripheral area network (PAN) that includes

a pulse oximeter to measure the saturation of peripheral oxygen and a weighting scale to measure the
body weight. These quantities are communicated to a smartphone through Bluetooth interfaces. The
smartphone collects information from the PAN (hub function), uses its internal accelerometer (sensor
function), processes data to detect the activity of the patient (processing function), and sends the
information to a medical server (MS) through a wide area network (WAN), implemented through a
telecommunication network accessed by the smartphone through its available radio interfaces.
The paper is organized as follows: Section 2 stresses the importance of a telemonitoring support

for patients suffering from HF and presents a brief overview of the state of the art of telemedicine
solutions for HF. Section 3 presents the smartphone-centric platform introduced in this paper and
lists the technical details of the implemented platform. Section 4 focuses on the activity recognition
algorithm. Section 5 contains the performance evaluation, and Section 6 presents the conclusions.

2. THE CASE OF HEART FAILURE

2.1. The importance of telemonitoring for heart failure

Heart failure is a chronic disease consisting in the heart’s limited ability to provide a sufficient blood
flow to satisfy the entire body’s needs. Such condition can be diagnosed with echocardiography and
blood tests. The treatment commonly consists of continuous lifestyle measurements, as well as drug
therapy and, in very critical cases, surgery. Typically, the monitored lifestyle forbids smoking and
includes breathing protocols, dietary changes, and light physical activity. As for patients suffering
from other chronic diseases, patients affected by HF greatly benefit from a continuous monitoring
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of both vital parameters and lifestyle (see [20] and references therein). Early identification of initial
instability often allows performing appropriate therapeutic actions and preventing the progression
to advanced stages that require hospitalization and, in particular, cause biological damage with pro-
gressive deterioration of the patient’s clinical condition.
Heart failure is an increasingly widespread disease in industrialized countries and is the leading

cause of hospitalization in Italy (data from the Italian Ministry of Health). HF patients require
highly frequent re-hospitalizations: over 70% of HF patients, discharged after an intense episode,
will be treated at least once again in the following 12months. Obviously, this implies high costs,
which must be rationalized for budget reasons. For the mentioned medical and economic reasons,
HF treatment may benefit from remote telemonitoring of vital parameters and lifestyle.
In this context, the most used parameters inmedical practice are bodyweight, transthoracic and body

impedances, blood pressure, and heart rate. In this paper, arterial oxygen saturation, body weight, and
patient activity have been taken into account by following the requirements of the medical team that is
participating to the research framework in which this platform has been developed.
These parameters have two characteristics that make them interesting for the purpose defined earlier:

they are clear signs of clinically relevant conditions and they are easily detectable in a noninvasive
way. As far as lifestyle is concerned, from the clinical viewpoint, it is very important to monitor phys-
ical activity on a daily basis. The telemonitoring platform proposed in this paper allows performing
daily physical activity monitoring by using only smartphones, thus reducing the dedicated sensors
worn or managed by patients.

2.2. Brief survey of the state of the art of telemedicine for heart failure

Concerning HF patients, a first computerized approach to store and compute clinical data has been
introduced in 1995: Wijbenga [21] described a workstation where a client/server-based application
was used to access an amount of stored data regarding HF symptoms and signs employed to classify
the severity of the patients’ condition.
More recently, the information and communications technologies community effort has focused on

remote patient monitoring. Two important experiences are described in [13, 22]. Suh et al. [22] illus-
trated WANDA B. platform. It involves sensors such as a Bluetooth weighting scale and devices to
monitor blood pressure and glucose, includes an activity monitoring system (an accelerometer-based
activity recorder) and a modem working as a hub to send the acquired data over the phone telecommu-
nication network toward the final destinations on the physicians’ side, where data are accessed through
Web interfaces. Smartphones are used only for nomadic data access through the mentionedWeb inter-
faces. In [19], a new release of the platformWANDA B, in which the smartphone is used to detect the
movements of the patients, has been presented. As previously mentioned, the main difference with
respect to the proposal of this paper concerns the activity recognition algorithm and the corresponding
skill to individuate precise movements of patients. A numerical comparison between the proposal of
this paper and the approach in [19] is proposed in Section 5. Reference [13] proposes a system to
remotely manage HFs. The proposed platform is divided into two ‘sub-platforms’: patient and profes-
sional platforms, respectively. The former includes ad hoc and commercial devices such as ECG,
respiration and physical activity sensors (embedded into the underwear), and a personal digital assis-
tant with communication capabilities. The latter is the ‘hub’ and includes a processing server used to
analyze all data, databases, and a Web portal offering ubiquitous access to physicians. In this case,
the limited communication capabilities of the personal digital assistant, usually implemented through
a Wi-Fi interface, partially restrict the necessary ubiquitous characteristic of the monitoring system.
Reference [23] discusses the effect of remote monitoring of patients with HF to detect early warning
signs of impending acute decompensations in order to prevent hospitalization. The considered remote
monitoring equipment consists of three commercially available components: a mobile phone, a
weighting scale, and a sphygmomanometer for fully automated measurement of blood pressure and
heart rate. From the telecommunication viewpoint, the platform is of the same type of the other
referenced systems. A group of previously hospitalized patients was trained to measure blood pressure
and weight and was instructed by a technician in the use of the mobile phone. Patients were asked to
measure vital parameters (blood pressure, heart rate, and body weight) daily at the same time, to enter
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these values as well as their dosage of HF medication into the mobile phone’s Internet browser, and to
send them to the monitoring center. Mobile phone is a nonautomatic patient-managed hub. Physical
activity is not taken into account. Another interesting contribution in the literature in the field is
represented by Pecchia et al. [18] where a home monitoring system is integrated with a data mining
method, based on classification and regression trees, aimed at detecting the worsening of the patients’
conditions. The presented monitoring system has a common general structure where body sensors
communicate with a server gathering data (acting as a hub). In this case, the work is focused on the data
mining method, and communication aspects are only marginally developed.

2.3. mHealth: mobile phone telehealth systems and concepts

An important technological reference for telehealth systems is represented by the mHealth platform
(also called mobile health technologies), which has been designed to acquire data such as vital param-
eters from the patients and to transmit them through a telecommunication network. mHealth is a subset
of electronic-Health (eHealth) and refers to wireless portable devices capable of transmitting, storing,
processing, and retrieving real-time and nonreal-time data among end users (e.g., patients, doctors, and
pharmacists) [23]. In particular, the mHealth Alliance, hosted by the United Nations Foundation and
founded by the Rockefeller Foundation, endorses the use of mobile technologies to improve the health
throughout the world [24–26].
In mHealth platforms, as shown in the literature (e.g., [24, 27–29] and references therein), the role

played by smartphones is of paramount importance. In particular, it is not only used as a hub capable
of information aggregation and transmission but also as a measurement system itself, thanks to its
internal sensors. External devices are connected to smartphones through a Bluetooth connection that
uses the health device profile (HDP) [30]. In more detail, concerning the interoperability among all
devices that compose the telehealth system (defined telehealth ecosystem in [30]), the reference is
represented by Continua Health Alliance (CHA) guidelines that include ISO/IEEE 11073 Personal
Health Data (PHD) standards [31, 32]. CHA is a nonprofit, open industry organization of healthcare
and technology companies collaborating together to improve the quality of personal healthcare. The
reference end-to-end architecture endorsed by CHA is reported in Figure 2.
Continua Health Alliance Design Guidelines contain references to the standards and specifications,

which Continua selected to ensure interoperability of devices, and additional design guidelines to
better adapt standards and specifications either by reducing options or adding features [33].
The architecture proposed in this paper, shown in the next section, is composed by taking mHealth

platform as reference. In this context, referring to sensors internal to smartphones, the presented architec-
ture relies on the use of the accelerometer that is contained in every modern smartphone, to determine the
specific type of activity performed by patients, as detailed in the remainder of the paper. The other used
devices, external to smartphones, are a pulse oximeter and a weighting scale, both of them capable of
acquiring and transmitting measurements to the smartphone through a Bluetooth connection conformant
to HDP [30]. As better remarked in the next section, referring to the terminology introduced and used by

Figure 2. Continua end-to-end reference architecture [34].

SMARTPHONES AND REMOTE HEALTH MONITORING OF HEART FAILURE

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2014)
DOI: 10.1002/dac



CHA in [34] and shown in Figure 2, the smartphone in the proposed architecture is an application hosting
device, while pulse oximeter and weighting scale are PAN devices. The PAN Interface upper layers have
been implemented in our architecture by developing an application running over an Android smartphone
that interacts with PAN devices through a Bluetooth low energy socket as in [24, 29].

3. COMMUNICATION STRUCTURE OF THE IMPLEMENTED SMARTPHONE-CENTRIC
PLATFORM FOR HF REMOTE MONITORING

The main feature of the architecture proposed in this paper is the smartphone-centric nature of the
platform. As previously stated, the smartphone is employed not only as a hub but also as a sensing,
processing, and transmitting device (applying the ‘hub+ sensor + processor’ paradigm mentioned in
Section 1.3) by using several communication interfaces such as Wi-Fi, 2G/3G, and general packet
radio service. This choice allows reducing the number of required components and implementing a
ubiquitous and automatic monitoring. For example, in our case, the accelerometer sensor is embedded
in the smartphone. A first use of this paradigm may be found for fitness applications such as, among
many others, Nike+, Endomondo, and RunKeeper but, in these cases, the smartphone: (i) contains a
global positioning system receiver, (ii) is used only to track distances and times covered during work-
outs and fitness activities, not to recognize specific movements, and (iii) does not use any accelerom-
eter or other sensor to detect the type of activity, which is the aim of this paper.
The block scheme composing the platform introduced in this paper is shown in Figure 3 by using

the same blocks of Figure 1 to allow an immediate comparison.
In general, a PAN may be composed both by wearable sensors that define a body area network

(BAN), see [35] for a tutorial about BANs, as well as by nonwearable sensors. In our case, nonwearable
sensors include a pulse oximeter needed to measure the SpO2, which is the saturation of peripheral
oxygen, and a weighting scale needed to measure the body weight. These parameters are measured once
a day and sent to the smartphone through the mentioned HDP conformant Bluetooth interfaces. The
smartphone, being used as an accelerometer sensor, may be considered part of the BAN and is, as said,
the application hosting device, that is, the hub that conveys information through a WAN to the final
destination, that is, the health record device. The WAN is a telecommunications network implemented
through a solution such as, in our case, either the mobile phone network typically used by smart and
mobile phones during ordinary operations or the Internet accessed through general packet radio
service/Wi-Fi interface. The final destination, in the designed platform, is a server, called MS, where
the parameters of all monitored patients are stored and made available to the medical staff.
Neither accelerometer nor localization wearable sensors are used because motion and localization

are provided by using the smartphone. The designed platform includes a number of smartphones,
one for each monitored patient. Samsung Galaxy S™ smartphones with the Android™ operating sys-
tem are employed in the platform, but obviously, this choice does not limit the general applicability

Figure 3. Communication system of smartphone-centric platform for heart failure remote health monitoring.
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of the solution. Smartphone interfaces are also ready to include in the PAN a chest strip worn by
patients, capable of providing an approximation of the transthoracic impedance and the heart rate,
ECG, ElectroEncephaloGram (EEG), Glucose, and blood pressure sensors, but, at the moment, these
physiological data are not part of the implemented platform because they are not included in the exper-
imental clinical protocol that the medical staff involved in the activity is going to apply.

3.1. Implementation details

The implemented communication architecture is shown in Figure 4. The smartphone platform sends data
either by a JavaScript Object Notation (JSON) string [36] through an Internet connection or, if not avail-
able, by a text message through a traditional mobile network. JSON stands for JavaScript Object Nota-
tion and is a lightweight data interchange format. The text message content, before being delivered, must
be parsed by a special tool called local tracker, which encapsulates the text message into a JSON string.
Data are stored in the health record database and are accessible from the MS application hosting

device, a computer on which vital parameters and patients’ history are available to be consulted.
Specifications and implemented connection methods between used devices (pulse oximeter and
weighting scale) and smartphone are presented in the following.

3.1.1. Nonin 9560 Onyx II pulse oximeter. Pulse oximeter (in Figure 5 the model we have used)
allows clinicians to remotely monitor oxygen saturation levels of blood and patients pulse rates. It
can detect saturation values from 0% to 100% and pulse rate values ranging from 18 to 321 beats per
minute. Concerning data communication interface, the oximeter we used follows IEEE 11073-10404
Standard [31]. Referring to Bluetooth communication standard, 9560 oximeter is a slave device. In
consequence, the master device (the smartphone, in our case) must initiate the connection with the
9560 slave device by implementing a pairing action. The 9560 device has a six-digit identification
number printed on the battery door. To complete the pairing process, the six-digit number must be pro-
vided to the master as Bluetooth PassKey (Bluetooth PIN). Once the pairing is complete, the 9560 will
automatically reconnect to the master device whenever possible. The six-digit Bluetooth PassKeymust
be entered only during the pairing action to a new master.
The most important part of the Java code used into the Android application developed by the

authors to allow the smartphone to interact with the pulse oximeter is contained in Figure 6. Starting
from Android version 4.0, the application programming interface (API) providing standard methods
and classes to manage Bluetooth health devices have been released (API level 14). The code snippet
in Figure 6 represents a callback method, which is delegated to listen the incoming Bluetooth
connections and to detect if data are incoming from the pulse oximeter.

Figure 4. The implemented architecture.
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3.1.2. UC-321PBT precision health scale. The used weighting scale (shown in Figure 7) can send
data by using a Bluetooth connection. It can store up to 40weight measurements, which are transmitted
to the Smartphone device once the pairing process is done. Differently from the pulse oximeter, the
scale behaves as a master device, so it must initiate the connection operation while the Smartphone
is used as a slave device. The code snippet in Figure 8 represents the Java code of the Android appli-
cation used by the smartphone to connect and receive the measurement data from the UC-321PBT
Scale, which is compliant to the IEEE 11073-10415 Standard [32].

4. PHYSICAL ACTIVITY DETECTION

The algorithm for patient activity detection running on the smartphone, which should be kept by the
patients in their pockets, has been preliminarily described in [37] and is summarized in the following.
Similarly to the literature in the field (e.g., [38] and [39]), the activity detection algorithm is based on
processing and classification of data sensed by the smartphone-embedded accelerometer. In this paper,
two different versions of this algorithm have been evaluated: the first is aimed at recognizing four dif-
ferent classes of physical activities, which are considered of interest in the context of this paper: (i) Idle,

Figure 5. Nonin 9560 Onyx II pulse oximeter.

Figure 6. Java code of the Android application developed to allow smartphone-pulse oximeter interaction.

I. BISIO ET AL.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2014)
DOI: 10.1002/dac



(ii) Still, (iii) Walking, and (iv) Running. It is called four-classes approach in the following; the second
version, which is an extension of the first one, is designed to recognize eight different classes: (i) Idle,
(ii) Sitting, (iii) Standing, (iv) Walking, (v) Going up the stairs (contracted in upstairs), (vi) Going
down the stairs (contracted in downstairs), (vii) Running, and (viii) Cycling. We consider these classes
of particular interest for the applicative field of this paper because they allow identifying more specific
movements. This activity detection version is called eight-classes solution hereafter.
Idle class recognizes if the patient has abandoned the smartphone. Sitting and Standing classes

represent the case in which the patient is in a sedentary condition (in the four-classes solution, they
are conveyed in the Still class). The other classes refer to the cases in which the patient is walking,
going up the stairs, and down the stairs (combined in the Walking class in the four-classes case) or
running. Cycling class concerns the case where a patient is cycling by using either a bike or an
exercise bike, indifferently. The smartphone employed during the tests integrates a triaxial,
piezoresistive accelerometer that measures the acceleration values on the three Cartesian axes in
meter per second squared.
The acquisition of training data for the activity detection algorithm has been performed by keeping

the smartphone in four different positions, based both on the display position: (i) facing toward the
user; (ii) toward the opposite side; and on the smartphone orientation: (iii) pointing up and (iv)
pointing down.
The algorithm collects raw measurements (one for each Cartesian axis: x, y, and z) from the

smartphone accelerometer for a time of length F [s], called frame, after which measurements are

Figure 7. UC-321PBT Precision Health Scale.

Figure 8. Java code used in the Android application used by the smartphone to interact with the health scale.
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interrupted to save energy for a time N [s]. N is called pause and is a multiple of F. After the pause,
measurements are acquired again for F [s] and so on. The quantity T=F+N [s] is defined as period.
Similarly to the windowed approach proposed in [40], a group of n periods T composes the window
W = n �T [s]. The mentioned quantities are shown in Figure 9. The described windowed approach,
which differs from the previously mentioned approach in [37], allows limiting the accelerometer
signal readings and, as a consequence, the related energy consumption that represents a key issue
when smartphones are employed because of their limited battery change.
In order to be classified, a feature vector is associated to each frame, which is composed of M

samples. As done in [41], the employed features for single-frame classification are the mean (μj),
standard deviation (σj), and number of peaks of the measurements Pj of the accelerometer for each
axis j ∈ {x,y,z}, computed as in (1).

Pj ¼ ∑
M

m¼1
ρj;m; ρj;m ¼ 1 if sj;mþ1 � sj;m

� �
sj;m � sj;m�1
� �

< 0; sj;m
�� ��≥ε

0 otherwise

(
(1)

sj,m is the value of the m� th sample of accelerometer signal along axis j; ε is a threshold
employed to define a signal peak. The feature vector is {μx,μy,μz,σx,σy,σz,Px,Py,Pz}.
Once a feature vector has been computed for a given frame, it is used by a classifier in order to asso-

ciate the corresponding frame to one of the considered classes. The employed classifier is a decision tree
proposed in [42] and employed also in [41] and [43]. Using theWekaworkbench [44], decision trees are
designed and compared on the basis of their recognition accuracy (RA). A decision tree is trained for
every combination of two and three of the users employed in the dataset creation described in the results.
After classifying each frame, each window, composed of n frames, is assigned to one of the consid-

ered classes as specified in the following, through a windowed decision policy. The windowW subse-
quently slides (n� 1)T [s] forward and the algorithm restarts.
Four different windowed decision policies are proposed, evaluated, and compared, as detailed in

the following.

1. Majority decision. The simplest windowed decision policy is a majority-rule decision: the window
is assigned to the class to which the largest number of frames in the window has been associated.
Such decisionmechanism is employed in some earlier works such as [45]. While it is clearly simple
to implement and computationally inexpensive, the majority-rule windowed decision treats all
frames within a window in the same way, without considering when the frames occurred and the
single-frame classification reliability.

2. Time-weighted decision. It gives different weights to the frames of a window on the basis of their
position in the window and assigns the window to the class with the largest total weight.

Its basic idea is that a frame has a larger weight if it is closer to the end of the window, under the
assumption that more recent classifications should be more reliable to determine the current user activ-
ity. Weights are assigned through function Ω(t) designed according to the criteria that Ω(0) = 1 and
Ω(t1)≥Ω(t2) for any t1≤ t2 and t≥ 0, and t=0 represents the time the most recent frame occurred.
If Tf is the arrival instant of a frame and Td is the instant when the windowed decision is made, then

the frame is assigned a weight equal toΩ(Td� Tf). Two different weighting functions are compared: a

Figure 9. Diagram representing the accelerometer signal acquisition.
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Gaussian Ωg tð Þ¼e
�t2

2k2g and a negative exponential Ωe tð Þ¼e�ket . For each function type, five different
functions are compared by choosing kg and ke based on a reference instant Tr and forcing Ωi(Tr) =ω,
i= g, e, where ω is one of the five linearly spaced values between 0 and 1.

1. Score-weighted decision. A score representing the reliability of the classification is assigned to
each frame [45]. The basic idea is that the closer a frame feature vector is to the decision bound-
ary, the more unreliable the frame classification is, under the hypothesis that the majority of
badly classified samples lie near the decision boundary. The distance of a feature vector from
the decision boundary is given by the shortest distance between the feature vector and the leaves
with different class labels. This distance is obtained by solving a constrained quadratic problem.
An estimate of the correct classification probability conditional to the distance from the decision
boundary is produced by using separate training data for each leaf.

2. Joint score-weighted/time-weighted decision. The last decision policy is given by combining the
temporal weights and the classification scores into a single, joint time-and-score weight. Fusion
is obtained by multiplying the corresponding time weight and classification score, because both
are between 0 and 1.

5. PERFORMANCE EVALUATION

5.1. Introduction to the tests

As said in Section 1.3 (from [18]), the critical factors for telemonitoring platforms are connectivity,
usability, quality of transmitted data, and interference with other devices. Under these aspects,
smartphones assure full connectivity coverage and usability, as well as data integrity and robustness
against interference with other devices. These aspects are deeply analyzed in the literature;
smartphones currently offer commercial data and voice services, and if they did not offer guarantees
in each single mentioned aspect, they would not be so widespread and used. Therefore, even if not
all such issues might be completely solved and improvements are still possible, the authors prefer
leaving these aspects to the literature and to the experts in electromagnetic interference and data
protection and focusing on the performance evaluation of the four-classes activity recognition solu-
tion (in Section 5.2), and of the eight-classes activity recognition solution showing its comparison
with the solution proposed in [19] (in Section 5.3), and on the description of the data exchange
between smartphone and MS (in Section 5.4), both designed by the authors and parts of the designed
platform. The impact of the technical innovations on the medical results will be verified once the
platform will be currently used by the medical team part of the research project. The use of the
platform for real patients is planned in the next few months.

5.2. Four-classes activity recognition accuracy

5.2.1. Dataset. The dataset employed in the experiments was acquired by four volunteers. Each
volunteer acquired about 1 h of data for each class, so producing globally almost 33 h of data, as
shown in Table I.
The phone was kept in the user’s front or rear pants pocket. The acquisition of training data was

performed by keeping the smartphone both with the display facing toward the user and away from
him and keeping the smartphone pointing both up and down.

Table I. Employed dataset for the four-classes case.

Sitting Standing Walking Running

Frames 3702 3981 3822 3711
Duration [min] 246.8 265.4 254.8 247.4
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5.2.2. Parameter setting. In order to determine proper values for parameters W, O, N, and ω, an
additional ad hoc sequence, not included in the dataset used to train and test the classifier, was
acquired by a fifth volunteer. Such a sequence was made of an hour of raw accelerometer measure-
ments and included all four considered activities, performed randomly. Their labels were used as
ground truth (GT), which is defined as the activity actually carried out. At first, single-frame clas-
sification (i.e., without any windowing mechanism, obtained by setting N= 0 [s]) was performed on
the sequence, producing recognized-class labels and classification scores. After that, the windowed
decision accuracy was evaluated (as described in the following results) for all admissible combi-
nations of W, O, and N. Δ was set to 60 s, and W, O, and N were evaluated in the following empiri-
cally determined ranges:W ∈ [3 �F, 9 �F],O ∈ [0,W� 1], and N ∈ [0, 14 �F]. Therefore, 411 different
{W,O,N} sets were evaluated. F was set to 4 s.

5.2.3. Numerical results. The confusion matrix (with percentages) concerning single-frame clas-
sifications is shown in Table II. The activities highlighted in gray in the first column represent the
GT. The other four columns contain the estimated activities (EAs).
All decision policies described in Section 4 were compared for each parameter configuration by

using five different values ofω (linearly spaced between 0 and 1, as said previously) and two different
values for Tr (60 and 120 s) for each policy. The results are shown in Table III, which contains the av-
erage Recognition Accuracy - RA (%), defined as the average correct detection over all considered
classes, and the reading time (%), which is the percentage of time dedicated to read accelerometer data
with respect to continuous measurements. In other words, if a single-frame approach is used, reading
time is 100%, while if a windowed mechanism with N= 4 �F is used, reading time is 20%. This has a
direct impact on energy consumption. The accuracy is very high in case of the single-frame approach,
as clearly shown in Tables II and III that show an average accuracy of 98%. This result is obviously
paid in terms of reading time and, consequently, of energy consumption. All windowed approaches al-
low to save energy and assure a satisfying RA. Score weighted, and joint score-weighted/time-
weighted solutions applyingW=5 �F, O=1 �F, N=7 �F, and Tr=120 s are particularly efficient lead-
ing to a reading time of about 9% and to a RA above 88%. This result is very satisfying because the
energy efficiency is really high and the obtained result leads to an improvement in decision accuracy
of more than 8% if compared with the classical majority-rule decision. The result is good also com-
pared with other approaches in the literature such as [41], [43], and [46].

Table III. Performance of the proposed windowed decision policies.

Decision policy RA (%) Reading time (%)

Frame-based Single-frame classification 98 100
Window-based Majority 80 12.5

Time weighted (Gaussian/exponential) 80/84.62 12.5/20
Score weighted 88.24 9.09
Joint score weighted/time weighted
(Gaussian/exponential)

88.24/88.24 9.09/9.09

RA, recognition accuracy.

Table II. Confusion matrix in case of single-frame classification for the four-classes case (%).

Sitting Standing Walking Running

Sitting 99 0 1 0
Standing 0.27 98.68 0.82 0.23
Walking 0 0.05 98.85 1.1
Running 0.28 0.1 4.4 95.22
Average 97.93

The bold values represent the percentage of correct decision for each class and the average recognition accuracy.
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5.2.4. Activity recognition: behavior over time. In order to complete the evaluation of the activity
recognition algorithm, the behavior over time of the algorithm was analyzed by focusing on a single
example user. A 45-min test was carried out. For the sake of completeness and in order to make the
test realistic, we tried to reproduce the normal human daily activity compressed in about 45min. For
this purpose, we divided the testing period as shown in Table IV, which reports the set of activities
actually carried out, that is, the GT. The joint score-weighted/time-weighted—Gaussian policy—is
used with the parameters specified in the previous section as getting the best results.
Figure 10 shows the temporal behavior of the EA compared with the GT. Figure 10 shows that mo-

tion (walking and running) is very well recognized and also that the Still case is often confused with the
Idle case. Practically, idle means that the smartphone lies upon a table or a desk, with zero acceleration.
On the other hand, in the Still class, the user is motionless (sitting or standing) and the sensor measures
a very low acceleration, often very close to zero when the user is sitting still. Hence, if the smartphone
is put on a desk, its acceleration is constantly zero and the corresponding state is immediately classified
as idle; but if the user is sitting, completely motionless, the Still class may bemistaken with the idle one
because the acceleration is zero also in this case. This may be seen globally in Table V, which shows
the overall time in minutes spent in each case and the corresponding percentage both for the GT and for
the estimation and, for each instant, in Figure 10, where it is clear that the Still class is perfectly recog-
nized in the period between minute 37 and 42 but is confused with the Idle class from minute 8 to 17.
Actually, the user is standing in the period [38–43] and has natural, often involuntary, slight move-
ments leading to nonzero acceleration, while he or she is sitting motionless from minute 8 to 17.
It is clear from Table V that the Walking class is well recognized: EA (11 25ʺ, 25.3%), and GT

(11 58ʺ, 27.16%) are almost overlapped. A similar analysis can be applied to the Running class: 4 54ʺ
(11.11%) of GT are estimated as 5 10ʺ (11.45%) by the proposed algorithm. On the contrary, as

Table IV. Type and timing of the activities actually carried out: ground truth.

Period (min) Activity Description Notes

2 Walking I walk down the stairs
3 Running
3 Walking Return to the office I walk up the stairs
9 Still Sitting at my desk Sitting
5 Walking I walk to get a coffee I walk down and up the stairs
7 Still Back to my desk Sitting
1 Walking
3 Still Sitting
2 Running I run
5 Still Standing
5 Idle Put the mobile on the desk Take mobile out of the pocket
45 Total

Figure 10. Temporal behavior of the activity recognition algorithm.
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previously evidenced, the Still case is easily mistaken with the Idle class. However, it is worth noticing
that if we consider the more general case of Nonmotion class composed of Idle and Still cases grouped
together, the performance is very satisfactory: 28 33ʺ (64.34%) of EA nonmotion estimates 27 11ʺ
(61.73%) of GT. The Motion class, defined as the sum of Walking and Running classes, is also
accurately estimated: 16 35ʺ (38.27%) of Motion is exactly estimated as 16 35ʺ (35.66%). Assuming
the user in good faith (i.e., when the smartphone is in the Idle state, the user, future patient, is actually
not walking or running without the smartphone) because an accurate monitoring is beneficial for his
or her health, a confident estimation of nonmotion is very important from a medical viewpoint because
it allows to reliably discriminate sedentariness from movement. A physician monitoring the patient’s
daily physical activity needs to know if a patient has performed a sufficient amount of activity (i.e., walk-
ing and running), while it is not so crucial to understand the type of sedentary activity. From this point of
view, also the lack of good faith (e.g., the patient leaves the smartphone at home to walk and run)may not
have a strong impact on health monitoring, although these aspects must be further investigated together
with the medical staff and with the help of real patients.

5.3. Eight-classes activity recognition accuracy and comparison

5.3.1. Dataset. The dataset employed in the eight-classes experiments was acquired by eight different
volunteers, both male and female. Each of them acquired around 30min of data for each class, so pro-
ducing an overall amount of data of almost 30 h, as shown in Table VI. The smartphone was kept in the
user’s front or rear pants pocket except for Sitting and Cycling classes in which the smartphone was
held in the front pocket only to avoid possible damages to the device. Again, the acquisition of training
data was performed by keeping the smartphone both with the display facing toward the user and away
from him and keeping the smartphone pointing both up and down.

5.3.2. Parameter setting. In order to fairly compare the proposed decision-tree classifier with the
approach proposed in [19], we applied the single-frame classification without the windowed
approach (i.e., N= 0). Since in [19] the accelerometer signal is sampled with a rate of about
20Hz with frames of 1min, we read the accelerometer values every 60ms, so obtaining a sample
rate close to 20Hz. A more precise sample rate selection is not possible because the Android operating
system allows choosing the sample rate only within a set of predefined values. Finally, we also fixed
the frame length to F=60 [s], so obtaining around 1200 samples per frame.

5.3.3. Results. The first set of results of this session is aimed at evidencing the values of the parameter
Km for each activity class considered in this paper. The activity recognition carried out in [19] is based on
the values of Km that has a high correlation with the total energy expenditure and is defined as

Table VI. Employed dataset for the eight-classes case.

Cycling Downstairs Idle Running Sitting Standing Upstairs Walking

Frames 3187.5 3063 2055 3711 3702 3981 2959.5 3822
Duration [min] 212.5 204.2 137 247.4 246.8 265.4 197.3 254.8

Table V. Overall time and time percentage spent in each case.

Estimated activity Ground truth

Time % Time % Time % Time %

Nonmotion Idle 5 10ʺ 11.45 28 33ʺ 64.34 15 46ʺ 35.80 27 11ʺ 61.73
Still 23 23ʺ 51.81 11 25ʺ 25.93

Motion Walking 11 25ʺ 25.30 16 35ʺ 35.66 11 58ʺ 27.16 16 35ʺ 38.27
Running 5 10ʺ 11.45 4 54ʺ 11.11
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whereM is the number of samples in a frame and sj,m is the value of them� th sample of the accelerometer
signal along the axis j∈ {x,y,z}. The parameter is, in practice, a measure of the energy of the accelerometer
signal. Figure 11 shows the numerical values of Km for each considered class. The box-plots show that
classes Cycling, Downstairs, Upstairs, and Walking have almost the same average value of Km, as well
as, less importantly in medical applications, Nonmotion classes Idle, Sitting, and Standing. Being the
decision about the activity taken in [19] exclusively based on the value of Km, classes with very similar
Km values shall not be distinguished. Differently, because it requires more energy, Running class is well
distinguished with respect to the others. Summarizing, the approach in [19] allows a macroscopic classi-
fication of movements in three categories: light, moderate, and vigorous. A more discriminating classifi-
cation is hardly reachable, as should be clearer from the results reported in the following.
The second set of results concerns the evaluation of the eight-classes version of the approach pro-

posed in this paper and its comparison with a Km-based approach. The employed features of the accel-
erometer signal are again the means, standard deviations, and number of peaks. The confusion matrix
obtained by using our approach is shown in Table VII. The proposed solution allows reaching an
average recognition accuracy (RA) of about 80%.
Similarly to the results proposed for the four-classes version, we have reported in Figure 12 a single-

user example of the temporal behavior where EA is compared with GT. Figure 12 is based on the
mentioned eight actions the exclusion of Cycling that is not part of this test. It is clear that EA is very
similar to GT except for the case ofWalking class that is sometimes confused with the Downstairs one.
To allow a direct comparison between our approach and a Km-based solution, we have tested an

eight-classes classifier, always based on a decision-tree algorithm, where only the parameter Km is

Figure 11. Km values versus classes.

Table VII. Confusion matrix for the all the features for the eight-classes single-frame classification (%).

Cycling Downstairs Idle Running Sitting Standing Upstairs Walking

Cycling 84.9 0 0 0.1 0 0 0.1 14.9
Downstairs 6.15 69.5 0 0 0 0 9.68 14.7
Idle 0 0 79.2 0 20.8 0 0 0
Running 0.2 0.6 0 99.2 0 0 0 0
Sitting 0 0 0 0 98.4 1.6 0 0
Standing 0 0 0 0 8.8 91.2 0 0
Upstairs 6.70 19.9 0 0 0 0 63.1 10.3
Walking 21.4 6.04 0 4.90 0.26 0 16.3 51.1
Average 79.6

The bold values represent the percentage of correct decision for each class and the average recognition accuracy.
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used as a feature. The obtained performance is shown in Table VIII. The average percentage of
accuracy is about 58%. As expected, an activity detection method based only on the values of
Km cannot distinguish among the considered eight different classes.

5.4. Activity data exchange between smartphone and medical server

The results of the physical activity detection must be transmitted to the MS. The issue has been
discussed in Section 3 from the communication viewpoint. In the following, a short description is
presented regarding the data exchange communication protocol operating on the smartphone at the
application layer, designed, and implemented by the authors to transfer data between smartphone
and MS. The communication protocol is based on JSON. JSON is a lightweight text-based open stan-
dard designed for human-readable data interchange, derived from the JavaScript scripting language

Figure 12. Temporal behavior of the activity recognition algorithm, eight-classes version.

Table VIII. Confusion matrix for the sole Km feature for the eight-classes single-frame classification (%).

Cycling Downstairs Idle Running Sitting Standing Upstairs Walking

Cycling 60.3 0 0 0.2 0 0 35.6 3.90
Downstairs 1.80 0 0 0 0 0 51.9 46.3
Idle 0 0 0 0 99.4 0.6 0 0
Running 0 0 0 96.1 0 0.15 0 3.75
Sitting 0.80 0 0 0 85.5 13.7 0 0
Standing 0.70 0 0 0 52.0 47.3 0 0
Upstairs 14.2 0 0 0 0 0 70.7 15.1
Walking 15.1 0 0 5.00 0 0 25.2 54.7
Average 58.2

The bold values represent the percentage of correct decision for each class and the average recognition accuracy.

Figure 13. Example of JavaScript Object Notation message sent from the smartphone to the medical server
concerning activity detection.
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and applied to simple data structures and associative arrays. JSON format is described in [36]. This
standard is used in this paper as an alternative to XML to serialize and transmit structured data over
the telecommunications network shown in Figures 3 and 4. The JSON message sent to the MS by
the smartphone contains a time stamp (the ts_upload field), the name of the user/patient (the
username field), the smartphone International Mobile Equipment Identity (which is a unique
number to identify mobile phones) to recognize the specific employed terminal (the imei field),
and the physical activity performed by the patient (the activity field). An example of JSON
message is shown in Figure 13. Similar messages are sent by the smartphone to transmit the other
monitored parameters. On the MS side, the mentioned fields are used to display information about
users/patients. Physicians will obtain information about a specific patient by using the
implemented Web interface in the MS.

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

A remote health monitoring architecture thought for patients suffering from HF is described in this
paper. The technological core of the architecture is the smartphone, which simultaneously plays the
role of hub, to convey data received by other sensors; sensor, to measure physical quantities; and
processor, to process the measurements. After describing the telemonitoring platform, the paper
mainly focuses on one processing task, essential for HF monitoring: patient activity detection. Such
a task is based on processing and classification of data sensed by the smartphone-embedded
accelerometer and is designed to recognize eight different classes of physical activities: Idle, Sitting,
Standing, Walking, Upstairs, Downstairs, Running, and Cycling.
The performed tests show that the applied activity detection algorithm leads to very satisfying

results, assuring an RA of about 88% in the case of a four-classes based classifier and about 80%
if a eight-classes classifier is used, as well as to outstanding energy saving (reading time of about
9% in the four-class case).
From a technological perspective, future developments will include additional processing

functions in the smartphone such as the precise computation of the pedestrian speed of the patients
(by using the accelerometer), and the integration between smartphones and other sensor nodes
applied to other physical activities. From the medical viewpoint, the monitoring platform is entering
the experimental phase involving real patients and will provide the first medical results in the next
few months.
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