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Abstract—Optimality conditions for Call Admission Control
(CAC) problems with nonlinearly constrained feasibility regions
and classes of users are derived. The adopted model is a
generalized stochastic knapsack, with exponentially distributed
interarrival times of the objects. Call admission strategies are
restricted to the family of Coordinate-Convex (CC) policies. For

classes of users, both general structural properties of the
optimal CC policies and structural properties that depend on the
revenue ratio are investigated. Then, the analysis is extended to
the case . The theoretical results are exploited to narrow
the set of admissible solutions to the associated knapsack problem,
i.e., the set of CC policies to which an optimal one belongs.
With respect to results available in the literature, less restrictive
conditions on the optimality of the complete-sharing policy are
obtained. To illustrate the role played by the theoretical results on
the combinatorial CAC problem, simulation results are presented,
which show how the number of candidate optimal CC policies
dramatically decreases as the derived optimality conditions are
imposed.

Index Terms—Call Admission Control (CAC), combinatorial
optimization, Coordinate-Convex (CC) policies, feasibility region,
nonlinear constraints, Stochastic Knapsack problem.

I. INTRODUCTION

C ALL Admission Control (CAC) determines when to ac-
cept or reject a new connection, flow, or call request,

thus limiting the load that enters a network. This is accom-
plished by verifying if enough resources are available to sat-
isfy the performance requirements (in terms, e.g., of packet loss,
delay, and jitter) of an incoming call without penalizing those
already in progress, in such a way to maximize an objective
represented, e.g., by the expected revenue associated with the
accepted calls. Therefore, CAC can be exploited to guarantee
specific quality-of-service (QoS) requirements on the load en-
tering the network.
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A basic model for CAC is the combinatorial optimization
problem known as Stochastic Knapsack [2] (see [3, Ch. 2–4]
for an in-depth exposition), in which one has resource units
and classes of users. The calls from each class

arrive with exponentially distributed inter-
arrival times (e.g., according to a Poisson process). If accepted
by the system, each of them occupies resource units (e.g.,
bandwidth), which are released at the end of the call. The sim-
plest CAC policy, known as Complete Sharing (CS), consists
of accepting a call whenever the system has sufficient resource
units. However, CS may lead to a monopolistic use of resources
by certain classes of users [4, Sec. III]. This motivates the in-
terest in other admission policies [5, Sec. 7.1].
In general, finding optimal policies for the stochastic knap-

sack is a difficult combinatorial optimization problem [3, Ch. 4].
The a priori knowledge of structural properties of the optimal
policies is useful to narrow their search. For instance, for
two classes of users and an objective given by a weighted
sum of per-class average revenues, structural properties were
derived in [2] for the optimal Coordinate-Convex policies (CC
policies), whose definition is recalled in Section II. In practice,
such properties restrict the call state of the CAC
system associated with the stochastic knapsack to suitable sub-
sets of , where each
represents the number of calls of the th class accepted by

the system and currently in progress. CC policies form a large
family of CAC policies, characterized by a relatively simple
structure and interesting properties, such as their product-form
steady-state distribution [3, Ch. 4] and bounds on per-class
blocking probabilities [6]. CC policies and their performance
are considered, e.g., in [7]–[10] in various contexts, such as
ATM and wireless networks. When service rates and resource
requirements do not depend on the customer’s classes (single
service), the optimal CAC policy is not CC and is called Trunk
Reservation (TR) [11], [12]. Recursive formulas to evaluate the
performance of TR were derived in [13] and [14]. However,
CC policies cover most practical cases, and they are often
taken as a starting point for further analysis. References [13]
and [14] propose an iterative algorithm to find a particular kind
of CC policy, called coordinate-optimal threshold policies, in
multiservice systems (i.e., systems where different classes may
have different and heterogeneous resource requirements and
mean service times).
The feasibility region [15, pp. 46–49], [16] is a (typi-

cally bounded) region in the call space, where given
QoS requirements in terms, e.g., of packet-loss/packet-delay
probability, are statistically guaranteed. In Fig. 1,
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Fig. 1. Upper boundary of a feasibility region with two classes
of users in the case of (a) a linearly constrained and (b) a nonlinearly
constrained .

denotes the (typically nonlinear) upper boundary of .
There exist various important contexts in which the linear
constraint in the stochastic knapsack
model, described in Fig. 1(a), has to be replaced by a more
complex (not necessarily convex) constraint, which defines a
nonlinear feasibility region. This is the case, e.g., with dynamic
service separation in statistical multiplexing [3], [17]. The
underlying idea of dynamic service separation is that only cell
streams from the same service (class of users) are allowed to
be statistically multiplexed. In an ATM multiplexer, a separate
mini-buffer is thus allocated to store cells from each service.
The QoS provision for each mini-buffer (i.e. cell loss rate,
maximum cell transfer delay, and cell delay variation) can be
supported by a weighted round robin or weighted fair queueing
scheduler and an appropriate assignment of the scheduling
weights. For dynamic service separation, the scheduling weight
for a given mini-buffer is made directly proportional to

, which denotes the equivalent capacity (also known
as capacity function [3]) associated with the th mini-buffer.
The equivalent capacity is the minimum amount of
link capacity needed in order to meet the packet-level QoS
requirements when connections are being served at the
th mini-buffer. To achieve the QoS guarantee for all the
mini-buffers that share the same link with total capacity , the
number of ongoing connections must satisfy for all the
capacity requirement constraint . Under
service separation, it is worth noting that depends only on
and not on , . By assigning an effective bandwidth
[3, p. 32] to the th class, one obtains . How-

ever, the concept of effective bandwidth is an approximation
of the CAC system. Indeed, it is well known that to reflect the
economies of scale in statistically multiplexing cell streams,

has to monotonically increase with decreasing slope
as increases [18], [19]. Therefore, in general one has to
cope with a nonlinear equivalent capacity, hence a nonlinearly
constrained feasibility region.
Another case in which the feasibility region is defined by non-

linear constraints is the cellular network scenario (CDMA2000
network) [20]. In [20], the outage-based admission region is
defined as the region of the call space where the probability
of outage (a disconnection of an accepted user) for each user
cannot exceed a prespecified threshold. The outage is described
by two parameters: the signal-to-interference-plus-noise ratio
(SINR) threshold and a minimum duration . An outage oc-
curs when the SINR remains below the threshold for a period
longer than or equal to . The feasibility region computed in [20]
turns out to be nonlinear.

Feasibility regions with convex piecewise-linear constraints
arise inmultiservice-multiresource (MSMR) systems [21]–[25].
In such cases, the constraint of the stochastic
knapsack is replaced by an -tuple of similar constraints

, . These can be further
generalized by replacing the terms with ,

.
A feasibility region with a nonlinear constraint can be also

interpreted as being associated to a stochastic knapsack whose
size is variable and depends on the number of calls of each class

. As remarked in [3, pp. 139–140], often the non-
linear part of the boundary is difficult to describe, both analyti-
cally and by simulations. In such a situation, it is worth investi-
gating structural properties of the optimal policies.
Exploring this issue for the family of CC policies is the aim

of this paper, in which we further develop the approach pro-
posed in [1] and [26]. To the best of our knowledge, until now
the problem of deriving structural properties of the optimal CC
policies in the case of general nonlinearly constrained feasibility
regions has received little attention. Some exceptions are [20],
[23], [24], [27], and our previous works [1] and [26].
This paper is structured as follows. In Section II, we intro-

duce the CAC problem studied in [2], which we extend to the
case of a nonlinearly constrained feasibility region . Con-
cerning CAC problems with nonlinearly constrained feasibility
regions, CC policies and classes of users, in Section III
we investigate the following:
• general structural properties of the optimal CC policies
(Section III-A);

• an algorithm to enumerate all the candidate-optimal CC
policies, i.e., those that satisfy the above-mentioned struc-
tural properties (Section III-B);

• structural properties that depend on the revenue ratio asso-
ciated with the two classes of users (Section III-C).

Section IV extends to the results in Section III. Numer-
ical simulations are reported in Section V. A conclusive dis-
cussion and comparisons with the results derived in [20] for
the optimality of the complete-sharing policy are contained in
Section VI. All the proofs of theorems and propositions are de-
ferred to Section VII.

II. PROBLEM FORMULATION

The model adopted in [2] for the CAC system is described
by a two-dimensional vector , whose component ,
, represents the number of connections of class that have

been accepted by the system and are currently in progress. For
each class , the interarrival times are exponentially distributed
with mean value and the holding times of the ac-
cepted connections are independent and identically distributed
(i.i.d.) with mean value . The CAC system accepts or re-
jects a connection request according to a CC policy, whose def-
inition [3, p. 116] is recalled in Definition II.1.
Definition II.1: A nonempty set is called CC

if and only if for each with , one has
, , where is a two-dimensional vector whose
th component is 1 and the other is 0. The CC policy associated
with a CC set admits an arriving request of connection if and
only if after admittance the state process remains in .
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As there is a one-to-one correspondence between CC sets and
CC policies, we use the symbol to denote both a CC set and
a CC policy.
We consider the following optimization problem associated

with the CAC system:

maximize (1)

s.t. (2)

where is the set of CC subsets of ,
is a two-dimensional vector whose component represents the
instantaneous revenue generated by any accepted connection of
class that is in progress, and is the steady-state prob-
ability that the CAC system is in state . Each may be also
considered as a weight to set priorities between the classes. As
is CC, is known to take on the product-form expression

(3)

where

(4)

In the case of a linearly constrained feasibility region
), [2] derived

sufficient conditions under which the CC policies maximizing
the objective (1) are of threshold type (defined in Section III-C).
Such conditions depend on the value assumed by the revenue
ratio .

III. NONLINEAR UPPER BOUNDARY, TWO CLASSES OF USERS

In our analysis, we consider the general case in which the
feasibility region may have a nonlinear upper boundary,
denoted by [see Fig. 1(b)]. We denote by the
upper boundary of the CC set . The set is assumed to be
CC, as it often happens for feasibility regions defined in terms
of QoS constraints [28, Proposition 6.3]. We recall from [2] the
following definition.
Definition III.1: The tuple is a type-1 corner

point for if and only if , , and either
or . The tuple is a

type-2 corner point for if and only if , ,
and either or .
We use the term “corner point” to refer both to a type-1 and

a type-2 corner point.

A. General Structural Properties

Let denote a generic optimal CC policy (or its associ-
ated CC set). Proposition III.2 states that has a nonempty
intersection with the upper boundary of the feasi-
bility region. Note that this is a nontrivial result, as for any two
CC sets , in general does not imply

.
Proposition III.2: has a nonempty intersection with

.

Fig. 2. Potential locations of the corner points of an optimal CC policy .
According to Proposition III.3, the corner points of have to be searched
among the points denoted by crosses.

Given a CC region , we define

such that (5)

such that (6)

The values and represent the maximum number
of type-1/type-2 connections allowed in when one has already
type-2/ type-1 connections, respectively. It follows from

the definitions that the functions are nonincreasing. We
define , .
Our next Proposition III.3, which extends the property stated

in [2, Theorem 1] for the linearly constrained case to nonlinearly
constrained feasibility regions, defines all the possible positions
of the corner points of an optimal CC policy . In particular,
it states that the corner points of can be located only among
the vertices of a suitable grid1 denoted by crosses in Fig. 2.
Proposition III.3:
(i) If is a type-2 corner point for , then for some

one has

(7)

(ii) If is a type-1 corner point for , then for some
one has

(8)

Let be the set of all CC policies whose corner points are
among the vertices of the grid with vertical lines of equa-
tions and and
horizontal lines of equations and

. According to Proposition III.3, any op-
timal CC policy belongs to .
For CC policies with at least two corner points,

Proposition III.2 can also be obtained as a consequence of the
following Proposition III.4, proved in [26]. The proposition
implies that between any two successive corner points
(ordered increasingly with respect to the coordinate ) the

1Note, however, that not all the combinations of points in the grid are a fea-
sible choice as corner points. Indeed, due to Definition III.1 and to the coordi-
nate-convexity of , no two corner points can be on the same vertical or hori-
zontal line.



1366 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

Fig. 3. Decomposition of the feasibility region into discrete disjoint rectangles.
The crosses represent the potential locations of the corner points of an optimal
CC policy, according to Proposition III.3.

intersection between and is nonempty (see
also [26, Fig. 2(b)]).
Proposition III.4 [26]: Let and

be two consecutive corner points of . Then, the intersection
between the vertical line and the horizontal
line either lies on or is outside .
According to our next proposition, in order to identify a CC

policy and, in particular, to find an optimal one , it is suffi-
cient to search within the set of corner points. More specifically,
the proposition states that one can construct a CC policy starting
merely from the knowledge of the positions of its corner points.
Proposition III.5: Let denote the set of corner points

of a CC policy and
and . Then, .

Proposition III.5 shows that a CC policy can be always ob-
tained by removing particular regions from the feasibility
region . The regions are built by using the corner points
of . In the case of an optimal CC policy , the search is sim-
plified by the fact that its corner points belong to the grid ,
so . An interesting result related to Proposition III.5
was stated in [23, Theorem 2] (in the general case ),
where it was proved that for feasibility regions corresponding
to MSMR systems, the optimal CC policies are obtained by
removing from the feasibility region all the points that be-
long to the intersection of a finite number of hyperplanes. In
general, such a number of hyperplanes is not known a priori,
but by further restricting the search for the optimal policies to
convex CC subsets of , stronger optimality conditions were
provided [23, Corollary 1]. Moreover, [24] shows that any op-
timal CC policy is convex for a continuous relaxation of the
problem considered in [23].

B. Cardinality of the Set of Candidate Optimal CC Policies

The feasibility region can always be written as the union of a
finite number of discrete disjoint rectangles with bases on
the -axis or the -axis, as shown in Fig. 3. Note from Fig. 3
that the cardinality of the grid is

so it is a function of only. Similarly, the cardinality of
the set is a function of only; let us denote such a cardi-
nality by . In general is much smaller than
the cardinality of the power set of . Indeed, if a candidate
optimal CC policy has a corner point that is a vertex of , then
some other vertices of cannot be corner points for that policy.

More precisely, for two successive corner points and
with , the coordinate-convexity

of the policy imposes the constraint . In particular,
this implies that any optimal CC policy has at most

corner points.
Algorithm 1 provides a way to compute by using

the following conditions ( being the th element of the cur-
rently examined set , and an element of ): a) all the co-
ordinates of are smaller than or equal to the corresponding
coordinates of ; b) all the coordinates of are greater than or
equal to the corresponding coordinates of .
The correctness of Algorithm 1 can be verified as follows.

Algorithm 1: Enumeration of the CC policies with all corner
points on the grid

Data: A subset of potential corner points on the grid .
denotes the th element of (the ordering is chosen

arbitrarily).
1 function
2 {if then
3
4 else
5
6 for do
7 with
8 meeting cond. a) or b) w.r.t.
9
10
11 end
12
13 end
14 return nPolicies}
15 The number of all CC policies with corner points on the

grid is then computed as .

Algorithm 1 constructs each CC policy with all its corner
points on the grid by adding corner points one after the other.
Each time a point is inserted into the current set2 of corner
points (line 6 in Algorithm 1), all the points satisfying con-
ditions a) or b) with respect to are removed from the set
of potential corner points of (line 9). Indeed, they cannot
be corner points of since this is in contrast with the coordi-
nate-convexity of and the fact that has already been chosen
as a corner point of . Moreover, according to line 7, all the
CC policies generated by Algorithm 1 have different sets of
corner points, so each CC policy is counted exactly once by
the algorithm. In particular, the number of policies is incre-
mented by one unit in two cases: either when the current set is
empty (line 3), or when one has decided to exclude all the points
in from being corner points of the current (line 12). In both

2One can check that by construction is a corner point, in the sense that it
satisfies Definition III.1 and is compatible with all the other corner points that
have been added so far in the previous calls of the recursive function “nPolicies”
of Algorithm 1.



CELLO et al.: OPTIMALITY CONDITIONS FOR CC POLICIES IN CAC WITH NONLINEAR FEASIBILITY BOUNDARIES 1367

cases, the set of all the corner points of the current can be ob-
tained by a backward examination of the choices of the index
made in subsequent nested calls of the function “nPolicies” at
line 10.
As an example, referring to the feasibility region in Fig. 3,

Algorithm 1 provides for
, respectively. Modifications of Algorithm 1 allow one

to compute also the exact number of all CC subsets of (i.e.,
the number of all its CC policies) or lower and upper bounds
on such a number. The number of candidate optimal CC poli-
cies can be further reduced by imposing compatibility with the
necessary optimality conditions stated in Propositions III.2 and
III.4 (see also Section V for an example). Both numbers can be
computed by suitable modifications of Algorithm 1, not detailed
here due to space constraints.

C. Structural Properties Dependent on the Revenue Ratio

Let us now consider structural properties of the optimal CC
policies obtained for suitable values of the revenue ratio

. The following definitions are needed.
Definition III.6 [2]: For , , , we define

(9)

where is defined in (4). represents the expected
value of the random variable corresponding to the
equilibrium state of a birth–death process with birth rates
(for ) given by

and death rates (for ) given by

Definition III.7 [2]: Let . A CC policy is threshold
type- if and only if for some one has

The following theorem states that under suitable conditions,
one has threshold-type optimal CC policies. The main idea of
the proof consists in deriving conditions that a point of the
grid has to satisfy in order to be a corner point for (see
Lemma VII.6). When such conditions are not satisfied for a
suitable subset of the grid, then is of threshold type (see
Lemma VII.7). The result is an extension of [2, Theorem 1] to
feasibility regions with a nonlinear upper boundary.
Definition III.8: Let and be the maximum width and

the maximum height of a step in the upper boundary of the fea-
sibility region , respectively.
Refer to Fig. 3 for an example of and .
Theorem III.9: Let be nonincreasing for and

.
(i) If , then is threshold type-1
and the threshold is equal to for some

.

(ii) If , then is threshold type-2
and the threshold is equal to for some

.
(iii) If , then .
An extension of [2, Theorem 1] to a nonlinearly constrained

feasibility region less general than ours and under a different
assumption on the holding-time distribution of the calls was re-
ported in [27, Sec. 4].

IV. EXTENSION TO CLASSES

Let the number of classes and, for a nonlinearly
constrained feasibility region, consider the problem formulation
given in Section II with all the two-dimensional vectors replaced
by correspondent -dimensional ones.
Definition IV.1: A nonempty set is called

CC if and only if for every with one has
, where is a -dimensional vector whose th component
is 1 and the others are 0. The CC policy associated with a CC
set admits an arriving request of connection if and only if after
admittance the state process remains in .
Definition IV.1: Given a -dimensional Cartesian coordi-

nate system, for and , let

be the the -dimensional discrete hyperplane at
the th position along the th axis.
Definition IV.3: For and , let

be the projection of on , i.e., along
the th axis. For a feasibility region and

, let be the largest index such that
.

Definition IV.4: For a feasibility region , the
grid is defined as

, where the sets are constructed
as described in Algorithm 2.

Algorithm 2: Construction of the grid

Data: We take orthogonal -dimensional
discrete hyperplanes , .

1 foreach do
2
3
4 for do
5 if then
6
7
8 end
9 end
10 end
11 The points of are obtained as intersections of

hyperplanes in and , excluding the point
(0, 0, , 0) that does not belong to the grid.

The following is an informal description of Algorithm 2.
Each hyperplane (line 1 in Algorithm 2) moves along
the th axis starting from and scanning the whole
feasibility region (line 4). When the cross section
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Fig. 4. Illustration of the procedure presented in Definition IV.4, Algorithm 2.
The points of the grid are obtained as intersections, as shown in (d), of suitable
planes shown in (a)–(c) for the point .

Fig. 5. Example of enumeration of the points in the grid , with .

changes (line 5), the position of the
hyperplane is recorded in (line 6) together with the current
cross section (line 7). The hyperplane with is always
considered (line 2). The intersections among the feasibility
region and the recorded discrete hyperplanes in the sets
form the points that compose the grid (line 11). By definition,
the point (0, 0, , 0) does not belong to the grid.
Fig. 4 shows a feasibility region ; for the sake of

simplicity, only is drawn and represented as a con-
tinuous contour. Analogously, the discrete planes are repre-
sented as continuous planes.
To identify a specific point , we use the following no-

tation. Given a grid in a -dimensional region, we associate
each point in with a vector , whose th compo-
nent represents the position of the point along the th axis. We
denote by the th component of the point associated
with . Refer to Fig. 5 for a graphical explanation in which
the point in a two-dimensional region is highlighted.
Definition IV.5: Given , , is consecutive to
with respect to if and only if

Of course, Definition IV.5 extends to the two vectors asso-
ciated with the two points , . Given two vectors ,

associated with two points in the grid , with a
vector whose th component is 1 and the other ones are 0,

it follows from Definition IV.5 that is consecutive

to with respect to (see Fig. 5). The following is an ex-
tension of Definition III.1 to the multidimensional case. In the
two-dimensional case, in order to simplify the notation in the
previous sections, we denoted the second index by .
Definition IV.6: Given a CC policy , the -tuple

is a corner point for if and only
if such that , one has .
The following two results are extensions to the -dimen-

sional case of Proposition III.3 and Theorem III.9, respectively.
Proposition IV. 7: If the -tuple is a

corner point of an optimal CC policy , then it belongs to the
grid .
Theorem IV.8: Let be nonincreasing for .

The following holds.
(i) If for a given and for all the vectors with

, one has

(10)

then all the possible corner points of have .
(ii) If condition (10) holds for all and for all the vectors

with , then .
Extending the terminology used for 2 classes of users, we

call threshold type- policy any CC policy of the form
for some nonnegative in-

teger . All the corner points of such a policy have their th
coordinate , for . When the assumptions of The-
orem IV.8(i) hold for all , it follows that is a threshold
type- policy, and by Proposition IV.7 its unique corner point
also belongs to the grid .
Finally, we mention that Propositions III.2 and III.5 hold

also for the case3 ; due to space limits, their proofs are
only sketched at the end of Section VII. Moreover, for
Algorithm 1 can be used (with no variation) to enumerate all
the CC policies with corner points on the grid .

V. SIMULATION RESULTS

A. Number of CC Policies Satisfying Various Constraints

In this section, we show how the number of candidate optimal
CC policies dramatically decreases as the necessary optimality
conditions that we have derived are added. Four different sce-
narios are simulated. They are enumerated from 1 to 4 and differ
for the following:
• the number of classes and the relative feasibility region:

and for Scenarios 1 and 2 and and
for Scenarios 3 and 4;

• the shape of the optimal CC policy : in Scenario 2 (4,
respectively), the assumptions of Theorem III.9(i) [The-
orem IV.8(i) for 2 and 3, respectively] are satis-
fied, and any optimal CC policy is a threshold type-1,
whereas in Scenarios 1 and 3, none of the conditions stated
in Theorem III.9(i) [Theorem IV.8(ii), respectively] is sat-
isfied, so the shape of is not provided by such theorems.

Table I summarizes the scenarios used in the simulations. To
determine the two feasibility regions and

3For , the sets are defined as
, i.e., they are -dimensional hyperoctants.
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TABLE I
SCENARIOS SIMULATED

TABLE II
TRAFFIC AND PACKET-LEVEL QoS PARAMETERS USED TO DETERMINE

AND

TABLE III
CONNECTION-LEVEL TRAFFIC PARAMETERS

, we consider the following model. A network node is mod-
eled as a statistical multiplexer with service separation with dy-
namic partition, in which the feasibility region is characterized
by the constraint . Assuming ON–OFF traffic
sources, we use the results from [18] to compute the following
approximation of the capacity function :

(11)

where is the packet loss probability associated with
sources of class sharing a bandwidth and a mini-buffer

of fixed size . Then, is approximated as the minimum
value of bandwidth in order to maintain the packet loss prob-
ability of packets belonging to the accepted connections
below a determinate value , for a fixed .
Table II shows the parameters used to compute and .

The feasibility regions and are shown in Figs. 6 and
7, respectively.
Table III shows the connection-level traffic parameters,

structured into four scenarios, used in the simulations. In
particular, in Scenario 1, with the feasibility region , we
have and ; for , , ,

, , and , we have ,
and . Then,

and by Theorem III.9(i), there exists an optimal CC policy
that is threshold type-1. An upper bound on the number of
such threshold type-1 policies is simply . One can
obtain a smaller upper bound by observing that the location

Fig. 6. Feasibility region determined by the parameters in Table II.

Fig. 7. Feasibility region determined by the parameters in Table II.

of the optimal threshold has to satisfy Proposition III.3. In
Scenario 2, the only parameter that changes is the revenue
rate, given in this case by . Then, and

, so we cannot conclude by Theorem III.9 about
the shape of . Similarly, in Scenario 3 the parameters were
chosen in order to satisfy the assumptions of Theorem IV.8(i)
for 2 and 3 (so the resulting optimal policy is threshold
type-1), whereas in Scenario 4, none of the assumptions of
Theorem IV.8 is satisfied, so we cannot conclude by The-
orem IV.8. For Scenarios 1 and 2, Table IV shows a lower
bound on the number of all CC policies, the number of policies
that satisfy: Proposition III.3, Propositions III.3 and III.2, and
Propositions III.2–III.4. Table IV allows checking how the
number of candidate optimal CC policies decreases as the
necessary optimality conditions are added. In Scenario 1, also
Theorem III.9(i) can be applied. A similar comparison is then
made for Scenarios 3 and 4 in Table V using the corresponding
results available for the multidimensional case.
It is important to remark that when the associated conditions

of Theorem III.9 or IV.8 are not met, the optimal CC policy may
not be of threshold type; in particular, it may be represented by
a nonconvex set [23].

B. Changes in the Optimal CC Policies Due to Traffic/Revenue
Changes

Using the values of of Scenario 1, Fig. 8 shows
the dependence of the shape of the optimal CC policy on the
revenue ratio . Fig. 9 shows how the optimal CC policy varies
when we consider different values of the arrival rates. We take

with , , and . The values of and
vary in the interval [0.5, 5].

VI. FINAL DISCUSSION AND COMPARISONS TO
PREVIOUS RESULTS

We have derived structural properties of the corner points
of the optimal CC policies in CAC problems with nonlinearly
constrained feasibility regions and classes of users. These
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TABLE IV
NUMBER OF CC POLICIES SATISFYING VARIOUS CONSTRAINTS COMING FROM THE OPTIMALITY CONDITIONS STATED IN SECTION III-A

TABLE V
NUMBER OF CC POLICIES SATISFYING VARIOUS CONSTRAINTS COMING FROM THE OPTIMALITY CONDITIONS STATED IN SECTIONS III-A AND IV

Fig. 8. Dependence of the shape of the optimal CC policy on the revenue
ratio .

Fig. 9. Dependence of the shape of the optimal CC policy on the arrival
rates and .

properties can be exploited to narrow the search for the op-
timal CC policies. In particular, Theorems III.9 and IV.8 pro-
vide sufficient conditions for the optimality of several kinds of
threshold-type policies and for the optimality of the complete
sharing policy. Propositions III.3 and IV.7 also provide pos-
sible locations of the corner points of an optimal CC policy (in
particular, when there exists an optimal threshold-type policy,
they restrict the search for an optimal location of the threshold).
Proposition III.2 (which holds also for the case ) fur-
ther restricts the locations of the corner points of an optimal CC
policy. Although the results of the paper hold for any ,
to ease its readability, the case was first considered, then
the main results were extended to classes.
The case of homogeneous Poisson arrivals and exponential

call durations, which was considered in the simulations, is often
assumed in the literature (see, e.g., [29]). However, the results
of the paper hold also for non-Poisson arrivals (i.e., arrivals
with rates depending on the state of the CAC system) and may

be extended to rates also slowly depending on time. Priority
among the classes of users can be incorporated in the model
by choosing suitable revenues [25] or by using cooperative
game theory [30]. Also, trunk reservation policies can be used
to this aim, but they are not CC policies. In [20, Sec. IV-A and
IV-C], for a similar4 CAC model with nonlinearly constrained
feasibility regions, the authors derived a sufficient condition
for which complete sharing (CS)—also called greedy policy in
[20]—is an optimal CC policy. For , the sufficient con-
dition for the optimality of CS given in [20, Equation (34)] is
(rewritten using our notation)

(12)

The sufficient condition for the optimality of CS, which follows
by our Theorem III.9(iii), is instead

(13)

The following relationships hold.
Proposition VI.1:

Proposition VI.1 implies that our sufficient condition (13) for
the optimality of CS is less restrictive than condition (12).
In [20, Sec. IV-C], the following sufficient condition for the

optimality of CS for a feasibility region with classes is
given

(14)

As a particularly simple but illustrative example, (14) holds,
e.g., when all the ratios are sufficiently small. On the

4The only significant difference between the two models has to do with the
discretizations of the time variable in [20] and, consequently, of the arrival and
departure processes. Our model can be considered as the limit of the one in [20]
when the sampling interval tends to 0. A second minor difference is that the
optimization problem in [20, Section IV-A] has a finite horizon. However, in
[20, Section IV-C] the authors show that their solution solves also a discrete-
time version of the infinite-horizon optimization problem with average reward
per-unit time defined by the objective (1).
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other hand, the sufficient condition from our Theorem IV.8(ii)
is

(15)

for all and all the vectors with .
Proposition VI.2: For all and all the vectors with

, one has

Proposition VI.2 implies that the sufficient conditions expressed
in (14) are more restrictive than ours in (15).
When the conditions of Theorems III.9 and IV.8 do not hold,

we first observe that our results still show that the search for an
optimal CC policy can be restricted to CC policies with all their
corner points on the grid . Algorithm 1 provides a way to enu-
merate all such policies. In the case in which the number of such
policies is large, it is still possible to replace the feasibility re-
gion with feasibility regions and
with “simpler” contours (in the sense that the associated grids
and have smaller sizes than the one of ), then to evaluate
the performance of all the CC policies generated by Algorithm 1
applied to and instead of . In this way, one ob-
tains, respectively, a lower bound and an upper bound on the
performance of an optimal CC policy for the original problem
associated with . Another possible application of our results
to the investigation of suboptimal policies is in the development
of greedy algorithms, such as the one described in [26]. Some
preliminary results in this direction were presented in [31].
A second way of restricting the search for an optimal CC

policy consists in applying suitable variations of Theorems III.9
and IV.8, which show that for certain values of the parame-
ters , some corner points of the grid can be excluded from
the search of an optimal CC policy. For simplicity of exposition,
in the following we only state one of such possible variations of
Theorem IV.8, which provides, for , some steps toward
the characterization of the optimality of the restricted complete
sharing policy, as defined in [32] (due to space limits, we do
not state an analogous result for the case , for which,
however, one can show that the restricted complete sharing
policy is a particular case of a threshold type-1 or threshold
type-2 policy). Inspection of such a definition shows that, for
all classes with the exception of at most one value of , the
restricted complete sharing policy has corner points whose
th coordinates are equal to 0 or 1.5 Interestingly, while [32]
provides bounds and numerical results on the performance
of the restricted complete sharing policy (only for linearly

5The definition of the restricted complete sharing policy used here differs
slightly from that used in [32]. Therein, also a way to determine for which values
of the th coordinate is equal to 0, for which it is equal to 1, and for which
it is free from these two constraints is provided. Since such conditions do not
influence the form of the restricted complete sharing policy, we have not taken
them into account in the following analysis in order to simplify the statement of
Proposition VI.3. Of course, one might still take them into account and state a
suitable variation of Proposition VI.3 at the expense of a heavier notation.

TABLE VI
PARAMETERS FOR THE APPLICATION OF PROPOSITION VI.3. IN THE TABLE, WE
ASSUME THAT EACH HAS A CONSTANT VALUE AND THAT THE
FEASIBILITY REGION IS CHOSEN IN SUCH A WAY THAT THE POSSIBLE

VALUES OF ARE 0, 1, AND 5

constrained feasibility regions), it does not provide conditions
for its optimality.6

Proposition VI.3: Let , be
nonincreasing. For all but one class , let one of the following
conditions hold.
(i) For all vectors with that are associated
with points in the grid , one has

(16)

(ii) There exists a point such that

(17)

and for all vectors with that are associ-
ated with points in the grid , one has

(18)

Then, any optimal CC policy has the form of the re-
stricted complete sharing policy.

As an example, Proposition VI.3 can be applied to the set of
parameters reported in Table VI for . In this particular ex-
ample, due to Proposition VI.3, the number of possible optimal
corner points is bounded from above by only .

VII. PROOFS AND TECHNICAL LEMMAS

Proposition III.2: The following definition and proposition
are needed in the proof. Note that Definition VII.1 holds also
for the case of classes of users.
Definition VII.1: A nonempty set is incremen-

tally removable with respect to a CC set if
and only if and is still a CC set. A nonempty
set is incrementally admissible with respect to

if and only if and is still a CC set.
Proposition VII.2 [26, Proposition III.3]: Let ,

be a type-2 corner point for and suppose that there exist
such that

, is , and
, is . Then, at least

6There are cases in which the restricted complete sharing policy is strictly
suboptimal. Indeed, for , simulation results showing significant improve-
ments of certain multiple-threshold policies over the restricted complete sharing
policy are presented in [14, Table IV] (the table refers to the case ).
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Fig. 10 Sets , , and used in the proof of Proposition III.2.

one of the following inequalities holds: 1) ;
2) .
Proof of Proposition III.2 for : Let us consider any

CC set such that . We show that
by a repeated application of Proposition VII.2, one can find a
sequence of CC sets associated with better CC policies, such
that at least one of these sets intersects .
Let be the set whose elements are the corner points

of and its cardinality. We observe that for any two
such successive corner points and ,
the coordinate-convexity of implies . As

, has at least two corner points, where the first
one is on the -axis and the last one

is on the -axis [see Fig. 10(a)].
a) If , then we apply Proposition VII.2 to the
corner point , choosing

, ,
and the largest nonnegative integer such that

[see Fig. 10(b)]. By Proposition VII.2, at least one of the
inequalities and
holds. By construction, ,
so if , the statement is proved
[see Fig. 10(c)]. Otherwise, . Note
that does not intersect and has only

corner points [see Fig. 10(d)], where the last
one is , where . Thus, we
can repeat the arguments used above starting from
instead of . After at most applications of
Proposition VII.2, we reach one of the following cases:
Either we find a CC policy better than the initial one and
with associated CC set intersecting , or we end
up with the next case (b).

b) If , then is rectangular. Hence, the CAC
system performs a decoupling between the two classes of
users. Then, can be improved by extending one of its
opposite sides until it meets .

Fig. 11. Example of a CC set having a type-2 corner point for which
for every .

Proposition III.3: We recall from [2] that the definition of
the objective in (1) can be extended consistently to all (not
necessarily CC) sets in the following way:

(19)

with

(20)

(21)

For a rectangular region
, from (4), (20), and (21), it follows that

(22)

Lemma VII.3 [2, Lemma 2], Extended to the -Dimensional
Case: Let be an optimal CC policy. Then: i) if is ,
then ; ii) if is , then .
Proof of Lemma VII.3: i) Let be . By the definition of
and the optimality of , we have

which in turn implies

The proof of ii) is similar.
Proof of Proposition III.3: We prove only (i), as (ii) is ob-

tained in the same way by exchanging the roles of the two
classes of users. Suppose that (7) is violated for every

. By choosing ,
, and

(see Fig. 11), it follows that the sets
and are CC, so is and

is . By (22), we get
, but this

contradicts the optimality condition in Lemma VII.3, so there
exists such that (7) holds.
Proof of Proposition III.5 for : We build starting

from and removing subregions from , each associated
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Fig. 12. Sets , , and considered in the proof of Proposition III.5.

with one of the corner points of . To simplify the no-
tations, we assume . The case can be dealt
with similarly.
Let be one of these corner points. Consider a point

and suppose that . The coordinate-convexity of
implies and , which is a contra-
diction. Therefore, each corner point excludes from

the set . Then

(23)

Now, we show that also holds, so is
completely determined by the knowledge of the locations of all
its corner points. This can be proved by showing that if

, then would have at least corner
points, which is a contradiction. We detail this part of the proof
considering what happens inside the strip

between two consecutive corner
points and (suppose for simplicity
of notation that all their coordinates are positive).7 First of all,
note that . Then,
by the definition of a corner point and the coordinate-convexity
of one has
and

.
Let , ,

and suppose that . Let be one of the points of
with minimal first coordinate, then by the coordinate-convexity
of one has . Let
be the only point of with first coordinate and minimal
second coordinate. One can check by the definition that
is a corner point, but this is a contradiction since the only corner
point in the strip is by construction. Then,
must be empty, and therefore . Fig. 12 shows an example
of the sets and considered in this proof
Summing up, . This,

combinedwith [obtained from
(23)], proves that . Similarly,
for the sets and defined in footnote 7, one has

7Similarly, if , then one should also consider the first strip
, and if , then one should

take into account also the last strip
.

, and

. Hence, .
Proof of Theorem III.9: The proof of Theorem III.9 is ob-

tained combining the following technical lemmas. LemmaVII.4
can be also proved as a consequence of Proposition III.5.
Lemma VII.4 (From [2, Lemma 1]): Let . A CC policy

is a type- threshold if and only if it has no type- corner points
( ).
Lemma VII.5 (From [2, Lemma 3]): For any nonnegative in-

tegers with , , , ,
, we have ;
Lemma VII.6 is our extension of [2, Lemma 4] to general

nonlinearly constrained feasibility regions. With respect to [2],
due to the different shape of the feasibility region, in gen-
eral, it is not true that implies .
As shown in Fig. 2, for every ,

there exist a minimum index and a maximum
index such that is constant on the set

. Similarly, for every

, there exist a minimum index

and a maximum index such that is constant
on the set . Let

and

.
Lemma VII.6:
(i) If is a type-2 corner point for and is non-
increasing, then for some , (7) holds
together with

(24)

(ii) If is a type-1 corner point for and is non-
increasing, then for some , (8) holds
together with

(25)

Proof of Lemma VII.6: Given a type-2 corner point ,
by Proposition III.3(i) for some , one has

. Choosing ,
,

, and

(see Fig. 13), it follows that the sets and
are CC, so is and is . By (22)

one gets

and



1374 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

Fig. 13. Description of a step in the proof of Lemma VII.6.

Combining these equalities with Lemma VII.3 (which implies
), one has

(26)

Since (see Fig. 13) and is nonincreasing,
by Lemma VII.5, one obtains

which, when combined with (26), proves (24). Formula (ii) is
proved similarly by exchanging the two classes os users.
Lemma VII.7: Let be nonincreasing for .
(i) If , where

then is threshold type-1, and the threshold is equal to
some for some .

(ii) If , where

then is threshold type-2, and the threshold is equal to
some for some .

(iii) If , then .
Proof of Lemma VII.7:
(i) If , then by Lemma VII.6(ii), has no
type-1 corner points, so it is a threshold type-1 policy by
Lemma VII.4. Let denote the corresponding threshold.
Then, either or
is a type-2 corner point for . In the second case, by
Proposition III.3(i), we have for
some .

(ii) (ii) is proved similarly.
(iii) If , then by parts (i) and (ii) is both

threshold type-1 and threshold type-2, so it coincides with
.

Remark VII.8: In the case of a linearly constrained feasi-
bility region with (i.e., the one considered in [2]),
one has for each , and

. Hence, in this case Lemma VII.7(i) reduces to
[2, Theorem 1(i)].
Proof of Theorem III.9: For each , it fol-

lows from the definitions of and of , that

and , so . Similarly,
we have .
Proposition IV.7: Before proving Proposition IV.7, as we did

before for the two-dimensional case, we extend the definition
of the objective to any -dimensional region as
follows:

(27)

Note that, for any CC set and with
and hyper-rectangles, it follows from (27) that

(instead, this is not true in general when and
are not hyper-rectangles). Moreover, given a -dimensional

region of the form

and (28)

where , , and is made up of points
whose th component is 0, it follows from (27) that

(29)

Proof of Proposition IV.7: We show that if a corner point
exists for an optimal CC policy , then we can construct

two CC regions such that a necessary
condition for the optimality of is violated.
By construction of the grid (Definition IV.4), since ,

there exists an index such that the component of is
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not in the set of possible values assumed by the th coordinate
of a point of the grid. Let be the largest value smaller than
that can be assumed by the th coordinate of a point of the

grid, and a point of the grid whose th component is and
whose associated vector is . Without loss of generality, we
suppose that there is no other corner point of whose th
component satisfies . Let

and

Then, the set

and (30)

is , whereas, by the construction of the grid, it follows
that between and its consecutive point , the cross
section of along the th axis does not change, so

and (31)

is a subset of and is . By formula (29), we get

Thus, one gets , which contradicts the opti-
mality condition in Lemma VII.3, and one concludes that if a
corner point of exists, then it has to be in the grid .
Theorem IV.8: The proof of Theorem IV.8 is based on the

following lemma, which is an extension of Lemma VII.7 to the
multidimensional case.
Lemma VII.9: If the -tuple is a

corner point for an optimal CC policy and is associated with
the vector , and are nonincreasing,
then, for all such that , one has

(32)

Proof of Lemma VII.9: For each of the components
of , we can construct two CC regions and as follows.
Likewise in the proof of Proposition IV.7, let be the largest
value smaller than that can be assumed by the th coordinate

of a point of the grid, and a point of the grid whose th com-
ponent is and whose associated vector is . Let

and

Then, the set

and (33)

is clearly , whereas

and (34)

is a subset of and is also . Using (29), we obtain

and

Combining these equalities with Lemma VII.3, we have

Now, is bounded from below by 0, whereas is
bounded from above by , where is any -di-
mensional hyper-rectangle that contains , for instance, the
hyper-rectangle . Hence, with
this choice of , one gets

Since are nonincreasing, by
Lemma VII.5, we get
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whereas

follows by the expression of the function in (9).
Proof of Theorem IV.8: By Proposition IV.7, any corner

point of belongs to the grid , so it is associated to a
vector , where for each .
(i) If , then by Lemma VII.9, the condition (32)
holds. However, this is in contradiction with the assump-
tion (10), so one obtains .

(ii) Proceeding likewise in the proof of (i), it follows that all
the potential corner points of have , for all

. Since (0, 0, , 0) is never a corner point, it
follows that has no corner points, so it is the complete
sharing policy.

Sketch of the Proof of Proposition III.2 for : The main
difference with respect to the case is in the construction
of the set and the set in Step a) of the proof.
In particular, two sets and satisfying a straightforward
extension of Proposition VII.2 to can be built in a similar
way as the sets and in (33) and (34). Regarding Step b),
the condition is replaced by .
Sketch of the Proof of Proposition III.5 for : The proof

is based on an induction argument (the result has been already
shown to hold for two classes). Suppose that the statement is
true for any -dimensional CC set. Now, for a given
-dimensional CC set and for ,

we consider the projections and
. Since all their elements

have , the sets and are actually -di-
mensional CC sets, so, by the induction hypothesis, one has
the representation , where the

sets are -dimensional hyperoctants. Then, by in-
creasing the index from to , one can show
that each time new corner points of show up, they generate
corner points of with coordinates equal to those of the new
corner points of , with the exception of the th coordinate,
which is equal to . Finally, sets of the required form (i.e.,
-dimensional hyperoctants associated to the just determined

corner points of ) can be readily generated from the ones
by adding a suitable constraint on the th coordinate.
Proof of Proposition VI.1: By the definition of the function

, we get

(35)

As is smaller than 1, one has

The following result is obtained in the same way:

Finally, one has

Proof of Proposition VI.2: Since
for , we

have

Moreover, proceeding likewise in formula (35), one obtains

which concludes the proof.
Proof of Proposition VI.3: The proposition is an immediate

consequence of Lemma VII.9 and the characterization of the
restricted complete sharing policy provided in Section VI.8
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