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ABSTRACT This paper proposes a system that allows recognizing a person’s emotional state starting from
audio signal registrations. The provided solution is aimed at improving the interaction among humans and
computers, thus allowing effective human-computer intelligent interaction. The system is able to recognize
six emotions (anger, boredom, disgust, fear, happiness, and sadness) and the neutral state. This set of
emotional states is widely used for emotion recognition purposes. It also distinguishes a single emotion
versus all the other possible ones, as proven in the proposed numerical results. The system is composed
of two subsystems: 1) gender recognition (GR) and 2) emotion recognition (ER). The experimental analysis
shows the performance in terms of accuracy of the proposed ER system. The results highlight that the a priori
knowledge of the speaker’s gender allows a performance increase. The obtained results show also that the
features selection adoption assures a satisfying recognition rate and allows reducing the employed features.
Future developments of the proposed solution may include the implementation of this system over mobile
devices such as smartphones.

INDEX TERMS Human-computer intelligent interaction, gender recognition, emotion recognition, pitch
estimation, support vector machine.

I. INTRODUCTION
Recently there has been a growing interest to improve
human-computer interaction. It is well-known that, to achieve
effective Human-Computer Intelligent Interaction (HCII),
computers should be able to interact naturally with the users,
i.e. the mentioned interaction should mimic human-human
interactions. HCII is becoming really relevant in applications
such as smart home, smart office and virtual reality, and it
may acquire importance in all aspects of future peoples life.
A peculiar and very important developing area concerns the
remote monitoring of elderly or ill people. Indeed, due to
the increasing aged population, HCII systems able to help
live independently are regarded as useful tools. Despite the
significant advances aimed at supporting elderly citizens,
many issues have to be addressed in order to help aged ill
people to live independently.

In this context recognizing people emotional state and
giving a suitable feedback may play a crucial role. As a con-
sequence, emotion recognition represents a hot research area

in both industry and academic field. There is much research
in this area and there have been some successful products [1].
Usually, emotion recognition systems are based on facial or
voice features. This paper proposes a solution, designed to
be employed in a Smart Environment, able to capture the
emotional state of a person starting from a registration of the
speech signals in the surrounding obtained by mobile devices
such as smartphones.
Main problems to be faced concern: the concept of emo-

tion, which is not precisely defined for the context of this
paper; the lack of a widely accepted taxonomy of emo-
tions and emotional states; the strong emotion manifesta-
tion dependency of the speaker. Emotion recognition is an
extremely difficult task.
This paper presents the implementation of a voice-based

emotion detection system suitable to be used over smartphone
platforms and able to recognize six emotions (anger, bore-
dom, disgust, fear, happiness, sadness) and the neutral state,
as widely used for emotion recognition. Particular attention
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is also reserved to the evaluation of the system capability to
recognize a single emotion versus all the others. For these
purposes, a deep analysis of the literature is provided and
state-of-the-art approaches and emotion related features are
evaluated. In more detail, to capture emotion information,
182 different features related to speech signals’ prosody and
spectrum shape are used; the classification task is performed
by adopting the Support Vector Machine (SVM) approach.

The main contributions of this paper concern: i) a system
able to recognize people emotions composed of two sub-
systems, Gender Recognition (GR) and Emotion Recogni-
tion (ER); ii) a gender recognition algorithm, based on pitch
extraction, and aimed at providing a priori information about
the gender of the speaker; iii) a SVM-based emotion classi-
fier, which employs the gender information as input. Reduced
feature sets, obtained by feature selection, performed through
Principal Component Analysis (PCA), have been investigated
and applied. In order to train and test the mentioned SVM-
based emotion classifier, a widely used emotional database
(called Berlin Emotional Speech Database, BESD) has been
employed.

Experimental results show that the proposed system is able
to recognize the emotional state of a speaker with an accuracy
level often higher than the evaluated methods taken from
the literature, without applying any pre-processing on the
analysed speech signals. The obtained results show also that
adopting a feature selection algorithm assures good recog-
nition rate levels also when a consistent reduction of the
used features is applied. This allow a strong limitation of
the number of operations required to identify the emotional
content of a particular audio signal. These peculiarities make
the proposed solution suitable to operate on mobile platforms
such as smartphones and tablets, in which the availability of
computational resources and the energy consumption consti-
tute issues of primary relevance.

The obtained results also show a strong dependency of
the overall system reliability on the database adopted for
training and testing phases: the use of a simulated database
(i.e., a collection of emotion vocal expressions played by
actors) allows obtaining a higher level of correctly identified
emotions. In addition, the performed tests show that the SVM-
based emotion classifier can be reliably used in applications
where the identification of a single emotion (or emotion
category) versus all the other possible ones is required, as in
case of panic or annoyance detection.

II. RELATED WORK
If the phone is aware of its owner mood can offer more
personal interaction and services. Mobile sensing, in recent
years, has gone beyond the mere measure of physically
observable events. Scientist studying affective computing
[2], [3] have published techniques able to detect the emo-
tional state of the user [2], [4]–[6] allowing the development
of emotion-aware mobile applications [7]. Existing work
focused on detecting emotions rely on the use of invasive
means such as microphones and cameras [5], [6], [8], and

body sensors worn by the user [7]. The proposed method
based on the employment of audio signals represents an
efficient alternative to the mentioned approaches. In the liter-
ature a traditional speech-based emotion recognition system
consists of four principal parts:

• Feature Extraction: it involves the elaboration of the
speech signal in order to obtain a certain number of
variables, called features, useful for speech emotion
recognition.

• Feature Selection: it selects the more appropriate fea-
tures in order to reduce the computational load and the
time required to recognize an emotion.

• Database: it is the memory of the classifier; it contains
sentences divided according to the emotions to be rec-
ognized.

• Classification: it assigns a label representing the recog-
nized emotion by using the features selected by the Fea-
ture Selection block and the sentences in the Database.

Given the significant variety of different techniques of
Feature Extraction, Feature Selection, and Classification, and
the breadth of existing databases, it is appropriate to analyse
in detail each block.

A. FEATURES EXTRACTION
Many different speech feature extraction methods have been
proposed over the years. Methods are distinguished by the the
ability to use information about human auditory processing
and perception, by the robustness to distortions, and by the
length of the observation window. Due to the physiology of
the human vocal tract, human speech is highly redundant
and has several speaker-dependent features, such as pitch,
speaking rate and accent. An important issue in the design of
a speech emotion recognition system is the extraction of suit-
able features that efficiently characterize different emotions.
Although there are many interesting works about automatic
speech emotion detection [9], there is not a silver bullet
feature for this aim.
Since speech signal is not stationary, it is very common

to divide the signal in short segments called frames, within
which speech signal can be considered as stationary. Human
voice can be considered as a stationary process for intervals
of 20–40 [ms]. If a feature is computed at each frame is
called local, otherwise, if it is calculated on the entire speech
is named global. There is not agreement in the scientific
community on which between local and global features are
more suitable for speech emotion recognition.

1) GENDER RECOGNITION FEATURES
Together with the Mel Frequency Cepstral Coefficients
(MFCC) [10], pitch is the most frequently used feature
[11]–[14] since it is a physiologically distinctive trait
of a speaker’s gender. Other employed features are for-
mant frequencies and bandwidths, open quotient and
source spectral tilt correlates [12], energy between adja-
cent formants [15], fractal dimension and fractal dimension
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complexity [13], jitter and shimmer (pitch and ampli-
tude micro-variations, respectively), harmonics-to-noise-
ratio, distance between signal spectrum and formants [16].

2) EMOTION RECOGNITION FEATURES
Coherently with the wide literature in the field, in this paper
a set of 182 features has been analysed for each the recorded
speech signal, including:

• Mean, variance, median, minimum,maximum and range
of the amplitude of the speech;

• Mean and variance of the speech Energy;
• Mean, variance, median, minimum,maximum and range
of the pitch;

• Mean, variance, minimum, maximum and range of the
first 4 formants;

• Energy of the first 22 Bark sub-bands [17];
• Mean, variance, minimum, maximum and range of
the first 12 Mel-Frequency Cepstrum Coefficients
[13], [14];

• Spectrum shape features: Center of Gravity, Standard
Deviation, Skewness and Kurtosis;

• Mean and standard deviation of the glottal pulse period,
jitter local absolute, relative average perturbation, differ-
ence of difference period and five-point period perturba-
tion quotient.

B. FEATURES SELECTION AND REDUCTION
A crucial problem for all emotion recognition systems is
the selection of the best set of features to characterize the
speech signal. The purpose of this part is to appropriately
select a subset of features from the original set in order
to optimize the classification time and the accuracy. In the
case of real-time applications reducing the number of used
feature is crucial in order to limit the computational com-
plexity and the required time to complete the emotion recog-
nition process. An increase in classification performance
usually would be expected when more features are used.
Nevertheless, the performance can decrease for an increasing
number of features if the number of patterns is too small.
This phenomenon is known as the curse of dimensional-
ity. This part also aims at reducing the speech features set
size either by selecting the most relevant feature subset and
removing the irrelevant ones or by generating few new fea-
tures that contain most valuable speech information. The
most performant strategy to get the best features set is an
exhaustive search but it is often computationally imprac-
tical. Therefore, many sub-optimum algorithms have been
proposed.

C. DATABASE
The database, also called dataset, is a very important part
of a speech emotion recognizer. The role of databases is to
assemble instances of episodic emotions. It is used both to
train and to test the classifier and it is composed of a collection
of sentences with different emotional content.

The most used are:

• Reading-Leeds Database [18]: project begun in 1994 to
meet the need for a large, well-annotated set of natural or
near-natural speeches orderly stored on computers. The
essential aim of the project was to collect speeches that
were genuinely emotional rather than acted or simulated.

• Belfast Database: it was developed as part of a project
called Principled Hybrid Systems and Their Application
(PHYSTA) [19], whose aim was to develop a system
capable of recognizing emotion from facial and vocal
signs.

• CREST-ESP (Expressive Speech Database): database
built within the ESP project [20]. Research goal was to
collect a database of spontaneous, expressive speeches.

• Berlin Emotional Speech (BES): this is the database
employed in this paper. For this reason paragraph III-B.4
has been dedicated to it.

D. CLASSIFICATION METHODS
The last part is needed to train and build a classification
model by using machine learning algorithms to predict the
emotional states on the basis of the speech instances. The
key task of this stage is to choose an efficient method to
provide accurate predicted results for emotion recognition.
Each classifier requires an initial phase in which it is trained
to perform a correct classification and a subsequent phase in
which the classifier is tested. There are several techniques to
manage the two phases.

• Percentage split: the database is divided into two parts,
used, respectively to train and to test the classifier.

• K-fold cross-validation [21]: it is a statistic technique
usable when the training set contains many sentences.
It allows mitigating the overfitting problem. In practice,
the dataset is randomly divided into k parts of equal size.
The algorithm acts in steps. At each step, one of these
parts is used as test set while all the others are employed
as training set. The procedure iterates until all the k parts
have been used to test the classifier. Finally, the results
of each step are averaged together.

• Leave-one-out cross-validation [22]: it is a variant of
the K-fold cross-validation in which k is equal to the
number of folds. In Leave-one-out cross-validation the
class distributions in the test set are not related to the
ones in the training data. Therefore it tends to give less
reliable results. However it is still useful to deal with
small datasets since it utilizes the greatest amount of
training data from the dataset.

• The database is used both for the training phase and for
the test phase.

Each classification method has advantages and drawbacks.
Among the many available approaches, the most used are
Maximum Likelihood Bayes (MLB) classifier [23], Sup-
port Vector Machine (SVM) [24], Hidden Markov Model
(HMM) [9], Artificial Neural Network (ANN) [25], k-Nearest
Neighbours (k-NN) [26]. Also other interesting classifiers
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are used in a significant number of studies dedicated to
the problem of speech emotion recognition and deserve to
be referenced: Fuzzy Classifier [27], Decision Tree [28],
Random Forest [29], Linear Discriminant Classifier (LDC)
[30], Generative Vector Quantization (GVQ) [31].

E. PAPER CONTRIBUTIONS
The paper presents a gender-driven emotion recognition sys-
tem whose aim, starting from speech recordings, is to indi-
viduate the gender of speakers and then, on the basis of this
information, to classify the emotion characterizing the speech
signals.

Concerning the first step, the paper proposes a gender
recognition method based on the pitch. This method employs
a typical speech signal feature and a novel extraction method.
It guarantees excellent performance: 100% accuracy. In prac-
tice, it always recognises the gender of the speaker.

Concerning the emotion recognition approach, the paper
proposes a solution based on traditional features sets and
classifiers but, differently from the state of the art, it employs
two classifiers (i.e., two Support Vector Machines): the one
trained on the basis of signals recorded by male speakers
and the other one trained by female speech signals. The
choice between the two classifiers is driven by the gen-
der information individuated through the gender recognition
method.

To the best of authors’ knowledge, the proposed gender-
driven emotion recognition system represents a novel
approach with respect to the literature in the field.

III. GENDER-DRIVEN EMOTION RECOGNITION SYSTEM
ARCHITECTURE
The system is aimed at recognizing 7 different emotions:
anger, boredom, disgust, fear, happiness, sadness, and neutral
state. The overall system scheme is reported in Fig. 1.

FIGURE 1. Proposed emotion recognition scheme overall
architecture.

The quantity s(t) represents the original continuous input
audio signal. The Front-End block acquires s(t) and samples it
with frequency FS = 16 [KHz] in order to obtain the discrete
sequence s(n). After this step, a feature vector� is computed
by the Features Extraction block. It is worth noticing that �
includes the features �GR and �ER respectively employed
by the Gender Recognition and the Emotion Recognition
subsystems. In practice the feature vector may be written
as � = {�GR,�ER

}. � is employed by the Gender-driven
Emotion Recognition block that provides the output of the
overall process: the recognized emotion. As already said and
discussed in the reminder of this Section, this block is divided
into two subsystems: Gender Recognition (GR) and Emotion
Recognition (ER).

A. GENDER RECOGNITION (GR) SUBSYSTEM
As reported in papers such as [10], [11], [13], [32], [33]
audio-based Gender Recognition (GR) has many applica-
tions. For example: gender-dependent model selection for the
improvement of automatic speech recognition and speaker
identification, content-based multimedia indexing systems,
interactive voice response systems, voice synthesis and smart
human-computer interaction. In this paper, the recognition of
the gender is used as input for the emotion recognition block.
As shown in the numerical result section, this pre-filtering
operation improves the accuracy of the emotion recognition
process.
Different kinds of classifiers are used to identify the

speaker gender starting from features: e.g., Continuous Den-
sity Hidden Markov Models [13], [16], Gaussian Mixture
Model (GMM) [14], [16], Neural Networks [10], [32], Sup-
port Vector Machines [12], [33]. The percentages of correct
recognition of the speaker gender are reported in Table 1 for
most classifiers referenced above.

TABLE 1. Classification accuracy (percentage) obtained by the
evaluated GR methods.

1) PROPOSED GENDER RECOGNITION ALGORITHM
The proposed GR method is designed to distinguish a
male from a female speaker and has been thought to be
realized over mobile devices, such as smartphones. It is
designed to operate in an open-set scenario and is based
on audio pitch estimation. In a nutshell: it is based on
the fact that pitch values of male speakers are on aver-
age lower than pitch values of female speakers because
male vocal folds are longer and thicker compared to female
ones. In addition, being male and female pitch frequency
separated, we realized that satisfying results in terms of
accuracy of the GR can be obtained by using a single-
feature threshold γthr classifier rather than more complex
and time-consuming ones. Furthermore, beingmobile devices
the target technology, time constraints must be carefully
considered in the design, in particular in view of real-time
applications.
The chosen feature is the mean of the Probability

Density Function (PDF), whose definition is reported in
Section III-A.3, of a number of frames of the voice signal,
as explained below.
The signal to be classified as ‘‘Male’’ or ‘‘Female’’ is

identified as s(n), n = 1 . . .N . The GR method introduced
in this paper is composed of the following steps:
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1) The signal s(n) is divided into frames.
2) The pitch frequency for each frame is estimated.
3) A number of frames of s(n) is grouped into a odd-

number of blocks.
4) The pitch PDF is estimated for each block.
5) The mean of each pitch PDF (PDFmean) is computed.
6) The decision about ‘‘Male’’ or ‘‘Female’’ is taken, for

each block, by comparing their PDFmean with a fixed
threshold γthr computed by using the training set.

7) The final decision on the whole signal gender is taken
by the majority rule: the signal s(n) is classified as
‘‘Male’’ if the majority of its blocks are classified as
‘‘Male’’. Otherwise, it is classified as ‘‘Female’’.

Average pitch frequencies for male and female speakers
and the individuated threshold γthr , referred to a recording
of 20 blocks are shown in Fig. 2.

FIGURE 2. Average pitch frequencies, referred to male and
female single speakers, and the employed threshold γthr , for a
recording divided in 20 blocks.

The proposed GR method has a very low computational
complexity and therefore consumes a limited quantity of
energy, nevertheless it guarantees 100% recognition perfor-
mance, as the solutions proposed in [10] and [33].

The reminder of this section is focused on the detailed
description of the single steps followed by the GR algorithm.

2) PITCH FREQUENCY ESTIMATION
Speech signal exhibits a relative periodicity and its fundamen-
tal frequency, called pitch (frequency), is usually the lowest
frequency component [35]. In the case of this paper, it is
important to estimate the Probability Density Function (PDF)
of the pitch of a given speech signal. The applied procedure
applied will be described in the following subsection. In
general, for voice speech, pitch is usually defined as the rate
of vibration of the vocal folds [36] and for this reason, can be
considered a distinctive feature of an individual. Estimating
the pitch of an audio sample could therefore help classify it as
belonging to either a male or a female, since its value for male
speakers is usually lower than the one for female speakers.
Many pitch estimation algorithms have been proposed in the
past years, involving both time- and frequency-domain anal-
ysis [35]. Many developed methods are context-specific, but
pitch estimators designed for a particular application depend

on the data domain and are typically less accurate when
applied to a different domain. A method based on the signal
autocorrelation has been chosen because of its good applica-
bility to voice and ease of implementation. This method has
been further adjusted by considering the physiological nature
of voice signals and by downsampling the autocorrelation
function, as described below.
In particular, given a real-value discrete-time signal

s(n), n ∈ [1 . . .N ] we have:

R(τ ) =
N−1∑
n=0

s(n)s(n+ τ ) τ ∈ [0, 1 . . .N − 1] (1)

R(τ ) in (1) is the autocorrelation of lag τ . For the specific
case of this paper, which deals with audio speech signals,
the set of possible samples τ of the autocorrelation function
can be reduced. [37] reports that the pitch of a speech signal,
due to physiological reasons, is contained in a limited range
[P1,P2] (typically P1 = 50 [Hz] and P2 = 500 [Hz]) and
limits the τ range between τ1 and τ2, defined in (2).

τ1 =

⌊
Fs
P2

⌋
and τ2 =

⌊
Fs
P1

⌋
(2)

Fs is the sampling frequency applied to the original analog
signal to obtain the discrete-time signal s(n). In practice, the
applied autocorrelation is defined in (3):

R̂(τ ) =
N−1−τ∑
n=0

s(n)s(n+ τ )

τ ∈ [τ1, τ1 + 1, τ1 + 2 . . . τ2] .

(3)

From the practical viewpoint, the physiological limitation
of the pitch range implies a first significant reduction of the
number of samples involved in the computation and, as a
consequence, of the overall complexity. The discrete-time
signals s(n) is divided into frames, in this paper each of
them composed of N = 640 samples, acquired by using
Fs = 16 [KHz]. The value of N is chosen in order to obtain
frames of Lf = 40 [ms], which allow considering human
voice as a stationary statistical process.

If the entire autocorrelation function R(τ ) computed as
in (1) is evaluated, the number of samples τ is equal to
640. Considering the physiological pitch limitations reported
above, (i.e., P1 = 50 [Hz] and P2 = 500 [Hz]), τ1 = 32
and τ2 = 320, as indicated in (2), R̂(τ ) in (3) is calculated by
using τ2 − τ1 + 1 = 289 samples.
The autocorrelation function shows how much the signal
correlates with itself, at different delays τ . Considering that,
given a ‘‘sufficiently periodical’’ speech recording, its auto-
correlation will present the highest value at delays corre-
sponding to multiples of pitch periods [35], [37].

Defining the pitch period as

τpitch = argmax
τ

R̂(τ ) (4)

the frequency of pitch is computed as

ρpitch =
Fs
τpitch

. (5)
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To further reduce the computational complexity of the
proposed pitch estimation method, a downsampled version
of the autocorrelation function is introduced in this paper by
using a downsampling factor r < 1 and 1

r ∈ N . Being N the
cardinality of the original set of autocorrelation samples, the
downsampled version uses K = rN samples. In practice, the
downsampled autocorrelation is defined as:

R̃(τ ) =
N−1−τ∑
n=0

s(n)s(n+ τ )

τ ∈
[
τ1, τ1 +

1
r , τ1 +

2
r . . . τ2

]
.

(6)

It means that R̃(τ ) considers just one sample of R̂(τ ) out of
1
r in the interval [τ1 . . . τ2].
As a consequence (4) and (5) become:

τ̃pitch = argmax
τ

R̃(τ ) (7)

ρ̃pitch =
Fs
τ̃pitch

. (8)

In order to still correctly determine the maximum of the
autocorrelation in (3), thus preventing errors in pitch estima-
tion, a maximum ‘‘Fine Search’’ method has been designed
and implemented in this paper to partially compensate the
inaccuracies introduced by downsampling. Starting from the
delay corresponding to the pitch τ̃pitch, obtained by the down-
sampled autocorrelation function, the values of R̂(τ ), in (3),
are computed for all the τ values adjacent to τ̃pitch up to a
depth of ±| 1r − 1|. Their maximum is taken as new pitch
period τ ′pitch. Analytically:

τ ′pitch = argmax
τ

R̂(τ )

τ ∈

[
τ̃pitch −

1
r
+ 1 . . . τ̃pitch − 1, τ̃pitch,

τ̃pitch + 1 . . . τ̃pitch +
1
r
− 1

]
(9)

ρ′pitch =
Fs
τ ′pitch

(10)

ρ′pitch is the reference pitch value in the remainder of this
paper. Autocorrelation downsampling may cause the ‘‘Fine
Search’’ to be applied around a local maximum of the auto-
correlation in (3) instead of the global one. This occurs only
if the delay corresponding to the global maximum of R̃(τ ) is
farther than ±| 1r − 1| samples from the delay corresponding
to the global maximum of R̃(τ ). This event occurs rarely
and, as a consequence, the new approach guarantees a good
estimation and represents a reasonable compromise between
performance and computational complexity energy saving,
making feasible the implementation of the GR algorithm over
mobile platforms.

3) PDF ESTIMATION
Looking at the list of steps in III-A.1 but providing more
detail, the signal s(n), n = 1 . . .N is divided into F = bNL c

frames, where L is the number of the sample in each frame.
The value of L directly derives from L = Fs ·Lf . Generic i-th
frame is defined as

fi = {s(n) : n = (i− 1)L + 1, ..., iL} , i = 1, ...,F . (11)

A pitch estimate is computed for each frame by applying
the method described in Section III-A.2. Sets of consecutive
frames are grouped together in blocks, in order to allow the
computation of a pitch PDF for each block. Consecutive
blocks are overlapped by V frames (i.e., the last V frames of
a block are the first V frames of the following one) in order
to take into account the possibility that a signal portion repre-
senting a speech falls across consecutive blocks if blockswere
not overlapped. The signal contribution to the classification
process would be divided between two separate blocks. The
overlap implies there are B = bF−VD−V c blocks. The t-th block
can be defined as

bt = {fi : i = (t − 1)(D− V )+ 1, ...,
tD− (t − 1)V } , t = 1, ...,B.

(12)

For each bt block there are V pitch values computed as
in (10) identified as ρbt ,vpitch, v = 1, ...,V . bt block PDFs
span over a frequency interval ranging from the minimum to
the maximum computed pitch value. Such frequency interval
is divided into H smaller frequency bins of 1p [Hz] size
determined through extensive tests. Being p is the variable
identifies the frequency the PDF for each block bt is esti-
mated by a weighted sum of the number of occurrences
of single ρbt ,vpitch, v = 1, ...,V within each frequency bin
h = 0, ...,H − 1. In formula:

PDF(p) =
H−1∑
h=0

wh · rect

p−
[(

1
2 + h

)
1p
]

1p

 (13)

wh is the coefficient associated to the h-th bin and imple-
ments the mentioned weighted sum, as explained in the fol-
lowing. If wh is the number of ρbt ,vpitch, v = 1, ...,V , whose val-
ues fall within the h-th bin, then the PDF is simply estimated
through the number of occurrences and is called ‘‘histogram
count’’. In order to have a more precise PDF estimation and,
consequently, more accurate features vectors, this paper links
the coefficient wh to the energy distribution of the signal s(n)
in the frequency range of the PDF.
Given the Discrete Fourier Transform (DFT) of s(n),

DFT (s(n)) = S(k) =
∑N−1

n=0 s(n) · e
−j2πn k

N , ∀k ∈

[0, ...,N − 1], the signal energy (Es) definition and the
Parseval Relation, written for the defined DFT , we have
Es =

∑N−1
n=0 |s(n)|

2
=

1
N

∑N−1
k=0 |S(k)|

2. A single energy
component is |S(k)|2, where k represents the index of the
frequency fk = k

N , k = 0, ...,N − 1. To evaluate the energy
component of each frequency bin h, we would need to know
the energy contribution carried by each pitch occurring within
bin h. In practice, the quantity |S(ρbt ,vpitch)|

2, v = 1, ...,V would
be necessary but the DFT is a function of an integer number k
and ρbt ,vpitch ∈ R. So, to allow the computation for real numbers,
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ρ
bt ,v
pitch is approximated by the closest integer number ρbt ,vpitch,int ,

defined as follows:

ρ
bt ,v
pitch,int =


⌊
ρ
bt ,v
pitch

⌋
if ρbt ,vpitch −

⌊
ρ
bt ,v
pitch

⌋
< 1

2⌈
ρ
bt ,v
pitch

⌉
if ρbt ,vpitch −

⌊
ρ
bt ,v
pitch

⌋
≥

1
2

(14)

Consequently, the coefficient wh, properly normalized, is
defined as

wh =

V∑
v=1

∣∣∣S(ρbt ,vpitch,int )
∣∣∣2

H−1∑
h=0

V∑
v=1

∣∣∣S(ρbt ,vpitch,int )
∣∣∣2 (15)

The sums with index v must be computed for each
ρ
bt ,v
pitch ∈ bin h. Directly from (15), higher-energy pitch esti-

mates become more relevant than lower-energy ones. Actu-
ally the underlying hypothesis is that higher-energy pitches
derive from fully voiced (without silence intervals) frames
and are therefore more reliable. This section leads to more
distinct PDFs and more accurate features vector, thus signif-
icantly improving the GR method performance compared to
computing PDFs by simply executing a ‘‘histogram count’’,
for whichwh is the number of pitches whose value falls within
the h-th bin.

4) FEATURES VECTOR DEFINITION AND GENDER
CLASSIFICATION POLICY
In order to determine the best feature vector �GR that max-
imizes the efficiency of the proposed GR method, different
feature vectors were evaluated by combining different indi-
vidual features:

• PDF maximum: PDFmax ;
• PDF mean: PDFmean;
• PDF standard deviation: PDFstd ;
• PDF roll-off: PDFroll−off ;

By using a general set of features, the feature vector would
be composed, for each block, by

�GR
=

{
ωGR1 , · · · , ωGRz , · · · , ωGRZ

}
(16)

where z ∈ [1,Z ] and Z is the size of the defined features
vector. In this paper, each element of �GR is one of the
features extracted from the Pitch PDF listed above so that
�GR
=
{
ωGR1 , ωGR2 , ωGR3 , ωGR4

}
.

For sake of completeness, different subsets of the fea-
tures listed above have been tested as features vector �GR.
However, due to the separation between male and female
pitch frequency, practical experiments have shown that the
employment of the PDFmean is sufficient to separate the
two classes. For this reason the feature vector is reduced to
a simple scalar �GR

= ωGR1 = PDFmean.

From an analytical viewpoint, PDFmean is computed as
follows:

�GR
= ωGR1 = PDFmean =

H−1∑
h=0

ph · wh (17)

where ph represents the central frequency of the h-th bin and
wh is computed as in (15). The label g of the recognized
gender is obtained through (18). g has value 1 for the Male
and −1 for Female.

g = g(�GR) = g(ωGR1 ) = −sgn(ωGR1 − γthr ) =

= −sgn

(
H−1∑
h=0

ph · wh − γthr

)
(18)

In practice, g = 1 if
∑H−1

h=0 ph · wh ≤ γthr , g = −1
otherwise. Starting from experimental tests, the employed
threshold γthr has been estimated to be 160 [Hz]. This numer-
ical value has been employed in the proposed gender-driven
emotion recognition system.
Numerical results, not reported here for sake of brevity,

have shown that the proposed method is able to recognize the
gender with 100% accuracy.

B. EMOTION RECOGNITION (ER) SUBSYSTEM
The implemented Emotion Recognition (ER) subsystem is
based on two inputs: the features extracted by the Features
Extraction Block �, in particular the sub-set �ER of fea-
tures needed for the emotion recognition and the recognized
speaker gender provided by the GR subsystem. Differently
from the the GR subsystem in which the employed feature has
been individuated (the Pitch), concerning the ER subsystem
the selection of feature(s) to be employed is still an open
issue. For this reason, this paper does not provide a fixed set
of features but proposes a study that takes into account the
most important features employed in the literature and their
selection through a features selection algorithm. Indeed, the
features employed in the ER subsystem are based on a set
of features (182 in this paper) or on a sub-set of them. Sub-
sets have been individuated by using a Principal Component
Analysis (PCA) algorithm and have been evaluated in terms
of recognition rate. The recognition rate obtained by varying
the selected features has been reported in Section IV.

1) PRINCIPAL EMOTION FEATURES
For the sake of completeness, in the reminder of this sub-
section, the definitions of the considered principal features
are listed and defined. Energy and amplitude are simply the
energy and the amplitude of the audio signals and no explicit
formal definition is necessary. Concerning Pitch related fea-
tures the extraction approach is based on the pitch estimation
described in Section III-A.2.
The other considered features can be defined as follows:

a) Formants: In speech processing, formants are the reso-
nance frequencies of the vocal tract. The estimation of their
frequency and their−3 [dB] bandwidth is fundamental for the
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analysis of the human speech as they are meaningful features
able to distinguish the vowel sounds.

In this paper, we employ a typical method to compute
them, which is based on the Linear Predictive Coding (LPC)
analysis. In more detail, the speech signal s(n) is re-sampled
at twice the value Fmax = 5.5 [Hz], which is the maxi-
mum frequency applied within the algorithm to search for-
mants. Then, a pre-emphasis filter is applied. The signal is
divided in audio frames (0.05 [s] long in the case of for-
mant extraction) and a Gaussian window is applied to each
frame. After that LPC Coefficients are computed by using
the Burg method [38]. Being zi = rie±θi the i-th complex
root pair of the prediction (LPC) polynomial, the frequency,
called ϒi, and the −3 [dB] bandwidth, indicated with 1i, of
the i-th formant related to the i-th complex root pair of the
LPC polynomial, can be estimated by applying the following
formulae [39]:

ϒi =
Fs
2π
θi (19)

1i = −
Fs
π

ln ri (20)

The algorithm finds all the formants in the range
[0 − Fmax] [Hz]. Some artefacts of the LPC algorithm
can produce ‘‘false’’ formants near 0 and Fmax [Hz] there-
fore the formants below 50 and over (Fmax − 50[Hz]) are
removed.
b) Mel-Frequency Cepstrum Coefficients: Mel-Frequency
Cepstrum (MFC) is a widely used representation of the short-
term power spectrum of a sound (i.e., an audio signal). Mel-
Frequency Cepstral Coefficients (MFCCs) allow describing
MFC. MFCCs computation is based on the subdivision of the
audio signal into analysis frames, whose duration is 30 [ms],
selected so that the distance between the centres of two adja-
cent frames is equal to 10 [ms] (i.e., two consecutive frames
are overlapped for one third of their duration). For each frame
the spectrum is shaped through the so called ‘‘mel-scale’’,
using 13 triangular overlapping filters. Finally, the MFCCs
of each frame are computed by using the Discrete Cosine
Transform (DCT).

MFCCi =
13∑
j=1

Pj cos
(
iπ
13

(j− 0.5)
)
, i ∈ [1,M ] (21)

where Pj represent the power, in [dB], of the output the j-th
filter and M is the number of considered MFFCs. In our
case, M = 12.
c) Center of Gravity: The spectral Centre Of Gravity (COG)
is a measure of how high the frequencies in a spectrum are.
For this reason the COG gives an average indication of the
spectral distribution of the speech signal under observation.
Given the considered discrete signal s(n) and its DFT S(k),

the COG has been computed by:

fCOG =

N∑
k=1

fk |S(k)|2

N∑
k=1

|S(k)|2
(22)

where, as defined in Section III-A.3, fk = k
N , k = 0, ...,N−1

represents the k-th frequency composing the DFT.
d) Spectrum Central Moments: The m-th central spectral
moment of the considered sequence s(n) has been computed
by:

µm =

N∑
k=1

(fk − fCOG)m |S(k)|2

N∑
k=1

|S(k)|2
(23)

e) Standard Deviation (SD): The standard deviation of a spec-
trum is defined as the measure of how much the frequencies
in a spectrum can deviate from the centre of gravity. SD
corresponds to the square root of the second central moment
µ2:

σ =
√
µ2 (24)

f) Skewness: The skewness of a spectrum is a measure of
symmetry and it is defined as the third central moment of
the considered sequence s(n), divided by the 1.5 power of the
second central moment:

γ1 =
µ3√
µ3
2

(25)

g) Kurtosis: The excess of Kurtosis is defined as the ratio
between the fourth central moment and the square of the sec-
ond central moment of the considered sequence s(n) minus 3:

γ2 =
µ4

µ2
2

− 3 (26)

h) Glottal Pulses: Human speech, in the time domain,
presents a periodic pattern. Each of the identifiable repeating
patterns is called ‘‘cycle’’ and each peak in a cycle is called
‘‘glottal pulse’’. The duration of each cycle is called ‘‘period
of the glottal pulse’’. The Dynamic Waveform Matching
(DWM) has been used to find Glottal Pulses. The mean of
the glottal pulse period (T̄ ) is defined as follows:

T̄ =
1
Q

Q∑
q=1

Tq (27)

where Tq is the duration of the q-th glottal pulse period andQ
is the number of periods. Among the Glottal Pulses, only the
following have been used:

• Jitter Local Absolute (JLA) is often used as a measure
of voice quality. JLA is defined as the average absolute
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difference between consecutive glottal pulses intervals:

JLA =
1

Q− 1

Q∑
q=2

∣∣Tq − Tq−1∣∣ (28)

• Relative average perturbation (JRAP) is a jitter measure
between an interval and its two neighbours:

JRAP =
1

(Q− 1)T̄

Q−1∑
q=2

∣∣∣∣Tq − Tq−1 + Tq + Tq+1
3

∣∣∣∣ (29)

• Difference of Difference Period (JDDP) is defined as
follows:

JDDP =
1

(Q− 2)T̄

Q−1∑
q=2

(Tq+1 − Tq)(Tq − Tq−1) (30)

• Five-points period perturbation quotient (J5PPQ) is a
jitter measure between an interval Tq and the average of
Tq and its four closest neighbours: Tq−2,Tq−1,Tq+1 and
Tq+2.

J5PPQ =
1

(Q−4)T̄

Q−3∑
q=3

∣∣∣∣Tq− Tq−2 + Tq−1 + Tq + Tq+1 + Tq+25

∣∣∣∣ (31)
2) EMOTION FEATURES SELECTION
As a preliminary step, the Principal Components Analysis
(PCA) algorithm has been used in order to reduce and limit
the number of features. PCA is a technique that, given high-
dimensional feature vectors reduces the number of features
used in the vector without losing too much information, by
using the dependencies between features and by identifying
the principal directions in which the features vary.

From each feature involved in the algorithm the mean
value is subtracted, in order to obtain zero-mean feature set.
After this step, PCA computes new variables called Principal
Components (PCs) which are obtained as linear combinations
of the original features. The first PC is required to have
the largest possible variance (which, considering zero-mean
feature sets, is equivalent to the concept of inertia, originally
employed in the PC definition, see [40]). The second compo-
nent is computed under the constraint of being orthogonal to
the first one and to have, again, the largest possible variance.
The other components are computed in a similar way. The
values of PCs for the features are called factor scores and can
be interpreted geometrically as the projections of the features
onto the principal components [40]. The importance of a
feature for a PC is directly proportional to the correspondent
squared factor score. This value is called the contribution of
the feature to the PC.

The value of the contribution is between 0 and 1 and, for
a given PC, the sum of the contributions of all features is
equal to 1. From a practical viewpoint, larger the value of the
contribution, bigger the feature contributes to the PC.
Contribution values will be used in the numerical results

section, in order to evaluate the Emotion Recognition block
when different number of features are employed, starting
from the one which presents the highest contribution.

3) EMOTIONS CLASSIFIERS
Usually, in the literature of the field, a Support Vector
Machine (SVM) is used to classify sentences. SVM is a rela-
tively new machine learning algorithm introduced by Vapnik
[24] and derived from statistical learning theory in the 90s.
Themain idea is to transform the original input set into a high-
dimensional feature space by using a kernel function and,
then, to achieve optimum classification in this new feature
space, where a clear separation among features obtained by
the optimal placement of a separation hyperplane under the
precondition of linear separability.
Differently from the previously proposed approaches,

two different classifiers, both kernel-based Support Vector
Machines (SVMs), have been employed in this paper as
shown in Figure 3.

FIGURE 3. Emotion Recognition (ER) subsystem.

The first one (called Male-SVM) is used if a male speaker
is recognized by the Gender Recognition block. The other
SVM (Female-SVM) is employed in case of female speaker.
Male-SVM and Female-SVM classifiers have been trained
by using speech signals of the employed reference DataBase
(DB) generated, respectively, by male and female speakers.
Being g = {1,−1} the label of the gender as defined

in Section III-A.4, the two SVMs have been trained by the
traditional Quadratic Programming (QP) as done in [41]. In
more detail, the following problem has been solved for each
gender g:

min
λg
0g(λg) =

1
2

`g∑
u=1

`g∑
v=1

yugy
v
gφ(x

u
g, x

v
g)λ

u
gλ

v
g −

`g∑
u=1

λug,

`g∑
u=1

λugy
u
g = 0,

0 ≤ λug ≤ C, ∀u

(32)

where λg = {λ1g . . . λ
u
g . . . λ

`g
g } represents the well-known

Lagrangian Multipliers vector of the QP problem writ-
ten in dual form. Vectors x1g, . . . , x

u
g, . . . , x

`g
g are features

vectors while scalars y1g, . . . , y
u
g, . . . , y

`g
g are related labels

(i.e., the emotions in this paper). They represent the vectors
of the training set for the g-th gender. (xug, y

u
g),∀u ∈ [1, `g] is

the related association, also called observation, between the
u-th input features vector xug and its label yug. The quantity `g
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is the total amount of observations composing the training
set. The quantity C (C > 0) is the Complexity constant
which determines the trade-off between the flatness (i.e., the
sensitivity of the prediction to perturbations in the features)
and the tolerant level for misclassified samples. Higher value
of C means that is more important minimising the degree of
misclassification. C = 1 is used in this paper.
Equation (32) represents a non-linear SVM and the func-

tion φ(xug, x
v
g) is the Kernel function that, in this paper, is

φ(xug, x
v
g) = (xug)

T (xvg)+ 1.
Coherently with [41], the QP problems (one for each gen-

der) in equation (32) are solved by the Sequential Mini-
mal Optimization (SMO) approach that provides an optimal
point, not necessarily unique and isolated, of (32) if and
only if Karush-Kuhn-Tucker (KKT) conditions are verified
and matrices yugy

v
gφ(x

u
g, x

v
g) are positive semi-definite. Details

about the KKT conditions and the SMO approach employed
to solve problem (32) can be found in [41] and references
therein.

4) EMPLOYED SIGNAL DATASET: BERLIN EMOTIONAL
SPEECH (BES)
As described in [42], and here reported for the sake of
completeness, BES is a public database of acted speeches.
The sentences are recorded by 10 German actors (5 male
and 5 female) that produced 10 utterances each (5 short
and 5 long phrases). Each utterance is classified with one
among 7 different labels: anger, boredom, disgust, fear,
happiness, sadness, and neutral. The sentences were eval-
uated by 20 listeners to check the emotional state and
only those that had a recognition rate of 80% or above
were retained, getting about 500 speeches. Additionally,
two more perception tests were carried out: one to rate
the strength of the displayed emotion for each speech, the
other to judge the syllable stress of every speech. Emotional
strength was used as a control variable in statistical anal-
ysis. Evaluating the syllable stress was necessary because
objective stress measurements are not available. This last
test was performed only by phonetically trained subjects.
Speeches were recorded within an anechoic chamber with
high-quality recording equipment. Recordings are sampled at
16 [KHz].

IV. PERFORMANCE EVALUATION
In this Section the performance evaluation of the overall
Emotion Recognition (ER), in terms of accuracy (i.e., correct
detection rate), of the system is presented. The recognized
emotions are: anger (AN), boredom (BO), disgust (DI), fear
(FE), happiness (HA), sadness (SA), together with the neutral
(NE) state. The reported results are divided into two main
parts. The first part shows the performance of the system if
no information about the gender of the speaker is exploited
in the emotion recognition process. The second part of the
results provides the performance obtained by exploiting the
knowledge related to the speakers’ gender. The experimental

results highlight that the gender information allows incre-
menting the accuracy of the emotion recognition system on
average.

A. WITHOUT GENDER RECOGNITION
In this subsection, the accuracy of a traditional approach,
without having any ‘‘a priori’’ information on the gender of
the speaker, is shown. In this case, a single SVM has been
trained with both male and female speeches. In more detail,
the SVM has been trained and tested, considering the overall
BES signals, by the k-fold cross-validation approach. The
original BES signals are randomly partitioned into k equal
size subsets. Among the k subsets, a single subset is retained
to test the SVM, and the other k − 1 subsets are employed
to train it. The cross-validation process is then repeated k
times, with each of the k subsets used once as validation set.
The obtained k results are then averaged to produce a single
result. In this paper, in all considered cases, k = 10 has been
employed.

TABLE 2. Confusion Matrix without applying any Gender
Recognition.

The obtained results are reported in Table 2, which reports
the confusion matrix of the recognition rate. The reported val-
ues have been obtained by employing all the aforementioned
182 features (i.e., no PCA has been applied). In more detail,
as for all the confusion matrices reported in this Performance
Evaluation Section, the first row represents the recognized
emotion while the first column contains the ground truth. For
example, in Table 2, given anger (AN) as ground truth, the
system ‘‘decides’’: AN in the 92.1% of the tests, never BO,
DI in the 1.6% of the tests, and so on. Moreover, the mean
value of the main diagonal of the matrix gives the average
accuracy. If the mean of the main diagonal is computed from
Table 2, it is possible to see that the method provides a good
percentage of correct recognition for each emotion: the aver-
age value is about 77.4%. It is also clear that some emotions
are better recognized (i.e., Anger and Sadness, recognized in
the 92.1% and 88.7% of the cases, respectively) than other
ones (such as Happiness, identified only in the 59.2% of the
cases).

B. WITH GENDER RECOGNITION
Differently from the previous Section, now we evaluate the
system performance when the ‘‘a priori’’ information on
the gender of the speaker is used. This information has
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been obtained by exploiting, in the testing phase, the Gen-
der Recognition subsystem introduced in Section III-A and
providing 100% gender recognition. In this case, as depicted
in Fig. 3 and as extensively explained before, two SVMs,
one for each gender, have been trained: the first SVM
through male speeches signals, the second through female
ones.

Also in this case, SVM training and testing phases
have been carried out by two k-fold (k = 10) cross-
validations and, again, the overall BES signals have been
employed by dividing male speech from female speech
signals.

Reported results show that the employment of information
related to speaker gender allows improving the performance.
The overall set of features (182) has been employed for these
tests. In more detail, Table 3 and Table 4 show the confusion
matrices concerning male and female speech signals, respec-
tively.

TABLE 3. Confusion Matrix of Male Speech Signals by applying
Gender Recognition.

TABLE 4. Confusion Matrix of Female Speech Signals by
applying Gender Recognition.

The average percentage of correct classification if male
speakers are recognized, is almost 79%. In the case of female
speeches, the average value of the correct recognition is
almost 84%. Globally, the performance in terms of correct
emotion recognition (accuracy), in case of gender recognition
is 81.5%, which represents a performance improvement of
about the 5.3% with respect to the results shown in Table 2,
where no gender information is employed.

C. FEATURES REDUCTION
As described previously in the paper, the considered
approaches (i.e., a single SVM trained without distinguishing
the gender and two SVMs driven by the proposed GR sub-
system) can be implemented by employing a reduced number
of features. A reduced number of features implies a reduction
of the computational load needed to carry out the emotion

recognition process and this opens the doors to the practical
implementation of the proposed solution over mobile devices
such as modern smartphones but performance must be satis-
factory. In this paragraph a performance study of the accuracy
by reducing the number of employed features, obtained by the
PCA approach, is shown. In particular, as reported in Fig. 4,
which shows the recognition percentage of the ER block by
varying the number of used features, the average emotion
recognition accuracy increases as the number of the employed
features increases. The features are added in the emotion
recognition process by following their contribution value, as
described in Section III-B.2. From a numerical viewpoint, the
accuracy reaches a values slightly above 70% of correctly
classified emotions, if the GR subsystems is not employed,
and a value of about 75%, if the GR subsystem drives the
emotion recognition process. This performance is obtained
when only 55 features are employed in the whole recognition
process. The obtained accuracy is not so much lower than the
accuracy (81.5%) obtained by using 182 features as reported
above. We think that this performance decrease represents
a reasonable trade-off between performance and computa-
tional load in view of future implementation over mobile
platforms.

FIGURE 4. Recognition Percentage of the ER system versus the
number of selected features.

D. SINGLE EMOTION DETECTION
In some applicative scenarios the recognition of a specific
emotion with respect to the others is of great interest. For
example, Safety and Security applications, whichmust recog-
nize dangerous events in critical areas, such as train stations
and airports, can exploit the recognition of fear detected by
several smartphones users in the same zone to automati-
cally monitor the whole area. Another possible example may
concern Entertainment applications aimed at monitoring the
positive opinion about plays, movies, concerts and shows: in
all these cases the recognition of happiness among the other
emotions can be a useful feedback.
For this reason, the proposed approach, which employs the

gender information, has been compared, in terms of accu-
racy, with the traditional approach, which does not employ
such information, to discriminate a particular emotion among
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the others. Figures 5, 6, 7 and 8 show the performance,
in terms of correct recognition of an emotion among the
others for sadness, neutral state, happiness and fear, respec-
tively. If the Gender Recognition subsystem is introduced,
some emotional states such as sadness or neutral (Fig. 5
and 6) have a significant performance improvement. Con-
cerning other emotions there is a limited advantage to use
the proposed gender pre-processing. The recognition rate can
slightly improve as in the happiness case (Fig. 7) but can
also experience a slight deterioration as in the case of fear
(Fig. 8).

FIGURE 5. Sadness Recognition Rate of the ER system by using
or not the Gender Recognition subsystem.

FIGURE 6. Neutral State Recognition Rate of the ER system by
using or not the Gender Recognition subsystem.

FIGURE 7. Happiness Recognition Rate of the ER system by
using or not the Gender Recognition subsystem.

FIGURE 8. Fear Recognition Rate of the ER system by using or
not the Gender Recognition subsystem.

V. CONCLUSION
The proposed system, able to recognize the emotional state
of a person starting from audio signals registrations, is com-
posed of two functional blocks: Gender Recognition (GR)
and Emotion Recognition (ER). The former has been imple-
mented by a Pitch Frequency Estimation method, the latter by
two Support Vector Machine (SVM) classifiers (fed by prop-
erly selected audio features), which exploit the GR subsystem
output.
The performance analysis shows the accuracy obtained

with the adopted emotion recognition system in terms of
recognition rate and the percentage of correctly recognized
emotional contents. The experimental results highlight that
the Gender Recognition (GR) subsystem allows increas-
ing the overall emotion recognition accuracy from 77.4%
to 81.5% due to the a priori knowledge of the speaker
gender.
The results show that with the employment of a features

selection algorithm, a satisfying recognition rate level can still
be obtained also reducing the employed features and, as a con-
sequence, the number of operations required to identify the
emotional contents. This makes feasible future development
of the proposed solution over mobile devices.
The obtained results underline that our system can be reli-

ably used to identify a single emotion, or emotion category,
versus all the other possible ones.
Possible future developments of this work can follow dif-

ferent directions: i) evaluation of the system performance by
grouping the considered emotions in bigger sets (i.e., negative
vs positive emotions); ii) evaluation of different classifica-
tion algorithms; iii) implementation and related performance
investigation of the proposed system on mobile devices; iv)
computational load and energy consumption analysis of the
implemented system.
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