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Abstract—In this letter, an analytical framework to model
nodes in Intermittently Connected Networks (ICNs) is proposed.
A relationship is derived in the z-domain between the discrete
probability densities of their buffer state occupancies and the
sizes of the arriving bulks. Under a fixed epidemic-routing-based
forwarding strategy, expressions are obtained for the average
buffer occupancy and its standard deviation with immediate
protocol advantages.

Index Terms—Intermittently connected networks, congestion
control, ad-hoc networks, Markov chains, epidemic routing.

I. INTRODUCTION

IN the last years various applications emerged, where net-
works operate under conditions in which the assumptions

of “universal connectivity” and “global information” do not
hold. Examples are sensor networks and vehicular ad-hoc
networks. A common denomination of such contexts is In-
termittently Connected Networks (ICNs). The networks may
be disconnected most of the time and it may even happen that
there is no end-to-end path available at the same time between
a source and a destination. In such contexts, classical routing
and data delivery-approaches fail [1]. In such cases, one of
the most common approaches is epidemic routing [2], which
is based on the replication and transmission of messages to
newly-discovered contacts.

In this letter we propose an analytical framework, based on
bulk arrival and bulk service queues, to model ICN nodes
behavior (Section II). We compute the stationary discrete
probability densities of the state occupancies of the ICN node
buffers, in terms of the discrete probability densities of the
sizes of the arriving bulks (Section III). Then, we investigate
a class of forwarding strategies, based on epidemic routing,
used by ICN nodes (Section IV). For this class of forwarding
strategies, we derive an expression for the average buffer
occupancy (Section V). Finally, we discuss related literature
(Section VI) and draw some conclusions (Section VII).

II. MODEL DESCRIPTION

We consider the following ICN scenario. M nodes, de-
ployed in an area, follow a certain mobility model, for
which we impose the following property: for each couple
of ICN nodes (m,n ∈ {1, . . . ,M},m �= n) the number of
encounters between them in any given interval of time is a
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Poisson random variable. This obviously means that the inter-
meeting time between two generic ICN nodes m and n is
an exponentially-distributed random variable. Popular mobility
models such as Random Waypoint and Random Direction [3]
enjoy such a property.

We denote by L ⊆ {1, . . . ,M} the set of destination nodes.
We model each node as a battery of queues (Figure 1). Within
a specific node j ∈ {1, . . . ,M}, there are |L(j)| queues,
where L(j) � L \ {j}. Each l-queue (l ∈ L(j)) within
the node j receives incoming data for the destination node
l in two different modes. Either the data directed to l are
internally generated by node j or they have been sent to j by
other nodes during previous encounters with j, on the basis
of a forwarding strategy. When node j ∈ {1, . . . ,M}, j �= l
encounters node l which is the destination of data it holds in its
l-queue, it empties the l-queue completely sending all its data
to l. To allow this operation, we assume that the maximum
data exchange time between two nodes is much smaller than
the average duration of the encounter.

More formally, node j encounters the destination node l
with average rate μj,l [encounters/s] and sends to l all the
packets buffered in its l-queue. Node j generates data in
bulks, assigned to l, with average rate rj,ls [generations/s]
and, at each generation, it produces Ij,ls [bulks/generation],
set to 1 in this letter. The average rate of bulk generation
is λj,l

s = rj,ls Ij,ls [bulks/s]. We assume an exponentially-
distributed time between two consecutive bulk generations.
Node j meets any node different from the destination l with
average rate Ej,l

e =
∑M

h=1,h �=j,l μ
j,h [encounters/s] and, at

each encounter, receives Ij,le [bulks/encounter], set to 1 in
this letter. The corresponding bulk generation process has rate
λj,l
e = Ej,l

e Ij,le [bulks/s] and is a Poisson process, since it is
the sum of independent Poisson processes. The two processes
of bulk generation with associated average rates λj,l

s and λj,l
e

are assumed to be independent. Due to the assumption on
the mobility model and on the generation of bulks, the global
process of bulk arrivals in the l-queue is a Poisson process.
We denote by λj,l = λj,l

s + λj,l
e [bulks/s] its average rate.

The size of each bulk (i.e., the number of packets in
the bulk) is also a random variable. We denote by gj,lk,e the
probability that the bulk assigned to l and received by j
during an encounter is composed of k packets, and by gj,lk,s the
probability that the bulk generated by node j and assigned to
node l is composed of k packets. The average arrival rate of
bulks of k packets in the l-queue, measured in [packets/s], is
λj,l
s gj,lk,s + λj,l

e gj,lk,e, as indicated in Figure 1. For k ∈ N0, we

denote by {gj,lk,s} and {gj,lk,e} the sequences whose components

are gj,lk,s and gj,lk,e, respectively; {gj,lk,s} and {gj,lk,e} represent the
discrete probability densities of the sizes of the two kinds of
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Fig. 1. Model of the generic ICN node j ∈ {1, . . . ,M} and its l-queue,
where l ∈ L(j) (k ∈ N0).
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Fig. 2. Transition rates for the continuous-time Markov chain related to
l-queue inside node j.

bulks. We denote by pj,lk the stationary probability that the
l-queue of node j has k packets and by {pj,lk } the sequence
that represents the discrete probability density of the size of
the l-queue in node j.

The model introduced above allows us to model the evolu-
tion of each l-queue as a continuous-time Markov chain with
bulk arrivals and bulk services. The transition rate from a
generic state h to the state h+ k is Aj,l

k = λj,l
s gj,lk,s +λj,l

e gj,lk,e,
which is the average arrival rate of bulks of length k. On
the other hand, if we consider the overall bulk arrival process
with average rate λj,l = λj,l

s +λj,l
e , then Aj,l

k can be expressed
as Aj,l

k = λj,lgj,lk where gj,lk is the probability of a k-length
arrival. So, gj,lk can be simply computed as in (1):

gj,lk =
λj,l
s

λj,l
s + λj,l

e

gj,lk,s +
λj,l
e

λj,l
s + λj,l

e

gj,lk,e . (1)

The quantity gj,lk,s can be interpreted as an endogenous com-
ponent, since it is associated with the packets generated inside
the currently considered node, and gj,lk,e as an exogenous
component, since, in general, it depends on the forwarding
strategies of the other nodes (see Section IV for a class of
possible models for {gj,lk,e}). The two terms λj,l

s

λj,l
s +λj,l

e
and

λj,l
e

λj,l
s +λj,l

e
in (1) play the role of weights. We denote by {gj,lk }

the sequence composed by the gj,lk values, which represents
the discrete probability density of the size of the bulk (inde-
pendently from its origin). The complete model of the Markov
chain with its transition rates is shown in Figure 2.

To simplify the notation, supposing to refer to node j and
queue l, in the remainder of the letter we omit the superscripts
j and l. So, (1) becomes

gk =
λs

λs + λe
gk,s +

λe

λs + λe
gk,e . (2)

III. A RELATIONSHIP BETWEEN ARRIVING BULK SIZE

AND QUEUE SIZE

The behavior of the Markov chain introduced in Section
II (which is represented by {pk}) depends on the discrete
probability density {gk} of the arriving bulk size in the
analyzed queue. The next proposition provides a relationship
between {pk} and {gk} by using their z-transforms P (z) �∑∞

k=0 pkz
−k and G(z) �

∑∞
k=0 gkz

−k.
Proposition 3.1: P (z) and G(z) satisfy

P (z) =
μ

(λ+ μ)− λG(z)
. (3)

Proof: By inspection of the transition rates shown in Fig-
ure 2, we can write down the following equilibrium equations:

∞∑
i=1

piμ =

∞∑
i=1

pkλgi , k = 0 , (4)

k−1∑
i=0

piλgk−i =

∞∑
i=1

pkλgi + pkμ , k ≥ 1 . (5)

As
∑∞

i=1 pi = 1− p0 and
∑∞

i=0 gi = 1, formulas (4) and (5)
become

μ(1− p0) = p0λ(1 − g0) ⇒ p0 =
μ

λ+ μ− λg0
, (6)

k−1∑
i=0

piλgk−i = pkλ(1−g0) + pkμ = (λ(1−g0) + μ)pk. (7)

Following an approach similar to the one used in [4], by
computing the z-transforms of both sides of (7) we get

∞∑
k=1

k−1∑
i=0

piλgk−iz
−k = (λ(1 − g0) + μ)

∞∑
k=1

pkz
−k . (8)

Proceeding likewise in [4, pp.134-139], we interchange the
summations and reorder the terms, thus getting

∞∑
k=1

k−1∑
i=0

piλgk−iz
−k = λ

∞∑
i=0

piz
−i

∞∑
k=i+1

gk−iz
−(k−i)

= λ

∞∑
i=0

piz
−i

∞∑
j=1

gjz
−j .

(9)

By (8) and (9) we obtain

λ
∞∑
i=0

piz
−i

∞∑
j=1

gjz
−j = (λ(1 − g0) + μ)

∞∑
k=1

pkz
−k . (10)

In terms of z-transforms, formula (10) gives

λP (z)(G(z)− g0) = (λ + μ− λg0)(P (z)− p0) . (11)

Finally, by substituting p0 = μ
λ+μ−λg0

in (11), we get (3).
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IV. FORWARDING STRATEGIES

In this section and in the next one, we suppose that all the
nodes of the network have the same traffic parameters, follow
the same forwarding strategy, and, by symmetry considera-
tions, have the same stationary discrete probability density
{pk}. Depending on the forwarding strategy used by the
nodes, the discrete probability density {gk,e} for each node
may depend on the state of the encountered node. Under
stationary conditions and taking into account that {pk} does
not depend on the node, this means that {gk,e} may depend
on {pk} (see (12) for a possible dependence).

A possible forwarding strategy, which is a way to implement
epidemic routing, is the following: when a node meets another
one that is different from the destination, the latter exchanges
the entire content of its buffer with probability q, otherwise no
exchange is performed with probability (1−q). In other words,
suppose that the node analyzed j, which contains the l-queue
under study, encounters the node i �= l. Node i downloads to
j all the content of its l-buffer with probability q. The size of
such an l-buffer is ruled, as said above, by {pk}, for any node.
So, the size of the l-buffer in the node i is k with probability
pk, and i sends k packets to j with probability pkq. On the
other hand, node i does not send anything to node j in two
cases: the first one happens with probability p0q, i.e., when
the buffer in i used for l is empty; the second one happens
with probability (1 − q) because of the forwarding strategy.
More formally, if we denote by {δk,h} the Kronecker delta
(δk,h � 1 for k = h and δk,h � 0 otherwise), {gk,e} is given
by

{gk,e} = (1− q){δk,0}+ q{pk} . (12)

Let Gs(z) and Ge(z) be the z-transforms of {gk,s} and {gk,e},
respectively. Proposition 4.1 provides an expression for the
z-transform P (z) of the sequence {pk} under the class of
forwarding strategies (12). The assumption q < μ/λe in
Proposition 4.1 is needed for the finiteness of the average
occupancy of the buffer, as it follows from the next formulas
(17) and (21).

Proposition 4.1: If {gk,e} has the form (12), then

P (z) =
μ

(λ+ μ)− (λsGs(z) + λe)
(13)

for q = 0, and

P (z) =
λ+ μ− λsGs(z)− λe(1− q)

2λeq

−
√
(λ+ μ− λsGs(z)− λe(1− q))

2 − 4λeμq

2λeq
(14)

for 0 < q ≤ 1 and q < μ/λe.
Proof: By (12) and (2) we get

G(z) =
λs

λs + λe
Gs(z) +

λe

λs + λe
[(1− q) + qP (z)] . (15)

Then for q = 0 the statement follows by Proposition 3.1,
taking into account that λ = λs + λe. Proceeding in a similar
way, for the case 0 < q ≤ 1 and q < μ/λ one obtains a
second-order algebraic equation for P (z) of the form

αP 2(z) + β(z)P (z) + γ = 0 , (16)

where α � λeq, β(z) � −[λ + μ − λsGs(z) − λe(1 −
q)], and γ � μ. Finally, between the two solutions

P (z) =
−β(z)±

√
β2(z)−4αγ

2α of (16), we take P (z) =
−β(z)−

√
β2(z)−4αγ

2α since, for q < μ/λe, is the only one
compatible with the constraint P (1) = Gs(1) = 1, mandatory
because {pk} and {gk,s} are discrete probability densities.

For the following analysis, the values of P ′(z) and P ′′(z)
(the first and the second complex derivatives of P (z), respec-
tively) computed at z = 1 are also needed. Starting from the
expression of P (z) in Proposition 4.1, simple computations
provide the following corollary.

Corollary 4.2: If {gk,e} has the form (12), then

P ′(1) =
λs

μ
G′

s(1) , (17)

P ′′(1) =
λs

μ
G′′

s (1) + 2
λ2
s

μ2
(G′

s(1))
2 , (18)

for q = 0, and

P ′(1) =
λs

μ− λeq
G′

s(1) , (19)

P ′′(1) =
λs

μ− λeq
G′′

s (1) +
2λ2

sμ

(μ− λeq)3
(G′

s(1))
2 , (20)

for 0 < q ≤ 1 and q < μ/λe.
Note that the computations of formulas (17)-(20) do not

require inverting z-transforms. Note also from (17)-(20) that,
for what concerns the computation of the first and second
order derivatives of P (z) in z = 1, (13) can be interpreted as
the limit case of (14) for q → 0+.

V. BUFFER OCCUPANCY

The analysis detailed in the previous sections allows us to
analyze the average buffer occupancy (21) and its standard
deviation (22). The next equation is obtained starting from
the definition of the z-transform: P (z) �

∑∞
k=0 pkz

−k,
performing the derivative P ′(z) = −∑∞

k=0 kpkz
−(k+1), and

imposing z = 1:
∞∑
i=0

ipi = −P ′(1) . (21)

Similarly we obtain:√√√√ ∞∑
i=0

(
i−

∞∑
k=0

kpk

)2

pi =
√
P ′′(1)(P ′′(1)− 2P ′(1)) .

(22)

Formulas (21) and (22) are checked by exchanging the order
of differentiation and summation in the definitions of P ′(z)
and P ′′(z), then taking z = 1. Figure 3 shows the behaviors of
the average buffer occupancy (21) and its standard deviation
(22) for the class of forwarding strategies (12), by varying the
parameter q and the values μ, λe, λs. For illustrative purposes,
we consider for the endogenous component {gk,s} a model in
which the conditions G′

s(1) = −1 and G′′
s (1) = 2 hold. An

example of such a model is

{gk,s} = {δk,1} , (23)
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Fig. 3. Average buffer occupancy and its standard deviation for the class
of forwarding strategies (12), by varying the parameter q and considering a
model for the endogenous component {gk,s} for which one has G′

s(1) = −1
and G′′

s (1) = 2.
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Fig. 4. Average buffer occupancy and its standard deviation with a Poisson
discrete probability density for the endogenous component {gk,s} for which
G′

s(1) = −3 and G′′
s (1) = 15.

whose z-transform is

Gs(z) = z−1 , (24)

i.e. all bulks are composed of 1 packet.
Similar curves can be obtained for more complex models.

Figure 4 shows the behaviors of the average buffer occupancy
(21) and its standard deviation (22) for a Poisson discrete
probability density

{gk,s} =

{
ake−a

k!

}
, (25)

(a > 0 is a parameter), whose z-transform is

Gs(z) = e−a(1−z−1) . (26)

where a = 3, G′
s(1) = −3 and G′′

s (1) = 15.
Figures 3 and 4 show similar behaviors with respect to the

parameters q and λs, which have a heavy impact in the system
performance: the higher the values of q and λs, the larger
the average buffer occupancy and its standard deviation. It is
important to remind that q represents the level of the epidemic

routing and λs is the average rate of bulk generation inside
the node.

VI. RELATED LITERATURE

An elegant model was proposed in [5] to analyze the
delivery delay and its relative trade-offs with energy consump-
tion and buffer requirements in the so-called (p, q)-epidemic
routing. In [5] p and q represent, respectively, the probability
that a node accepts a packet copy from another node when
none of them is the source and the probability that a node
accepts a packet copy from the packet source node. With
a proper tuning of the values of p and q, (p, q)-epidemic
routing models flooding, randomized flooding, or two-hops
forwarding. The model is based on a continuous-time Markov
chain, in which the state represents the number of copies of
a specific packet in the system.

In [6], the authors developed a mathematical framework
based on a Markov chain to get insights into the global
congestion behavior. Their analysis is greatly simplified by
replacing some random variables in the model with their
expected values.

Differently from [5] and [6], in this letter we have focused
on the behavior of a network single node, estimating both the
discrete probability density of the size of its l-queue and the
exogenous component {gk,e} of {gk}.

VII. CONCLUSIONS

We have derived a relationship between the discrete proba-
bility densities of bulk and queue sizes, which, under a fixed
bulk epidemic forwarding strategy and fixed rates, depends
only on the traffic generated by single nodes towards a
specific destination. This allows to compute the average buffer
occupancy and its standard deviation for a specific queue that
contains traffic for a given destination within a node, knowing
only the discrete probability density of the size of the bulks
generated by that node towards the given destination. This has
immediate practical advantages, e.g., in congestion control.
The model and the analysis can be extended to the case of
different classes of nodes, each one associated with its own
bulk generation rate.
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