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Abstract—The advancements in connected and autonomous
vehicles in these times demand the availability of tools provid-
ing the agents with the capability to be aware and predict their
own states and context dynamics. This article presents a novel
approach to develop an initial level of collective awareness (CA) in
a network of intelligent agents. A specific collective self-awareness
functionality is considered, namely, agent-centered detection of
abnormal situations present in the environment around any agent
in the network. Moreover, the agent should be capable of ana-
lyzing how such abnormalities can influence the future actions
of each agent. Data-driven dynamic Bayesian network (DBN)
models learned from time series of sensory data recorded dur-
ing the realization of tasks (agent network experiences) are here
used for abnormality detection and prediction. A set of DBNs,
each related to an agent, is used to allow the agents in the
network to reach synchronously aware possible abnormalities
occurring when available models are used on a new instance of
the task for which DBNs have been learned. A growing neural
gas (GNG) algorithm is used to learn the node variables and con-
ditional probabilities linking nodes in the DBN models; a Markov
jump particle filter (MJPF) is employed for state estimation and
abnormality detection in each agent using learned DBNs as fil-
ter parameters. Performance metrics are discussed to asses the
algorithm’s reliability and accuracy. The impact is also evaluated
by the communication channel used by the network to share the
data sensed in a distributed way by each agent of the network.
The IEEE 802.11p protocol standard has been considered for
communication among agents. Performances of the DBN-based
abnormality detection models under different channel and source
conditions are discussed. The effects of distances among agents
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and of the delays and packet losses are analyzed in different sce-
nario categories (urban, suburban, and rural). Real data sets are
also used acquired by autonomous vehicles performing different
tasks in a controlled environment.

Index Terms—Abnormality detection, collective awareness
(CA), connected vehicles, dynamic bayesian network (DBN),
Markov jump particle filter (MJPF), self-awareness (SA).

I. INTRODUCTION

INTERNET of Things (IoT) is a concept that connects var-
ious physical objects and allows them to exchange data

over the Internet. An IoT is a forefront technology which
helps to reduce human efforts by enabling autonomous control
capabilities and intelligence in machines and makes human
life easier. The IoT can produce a network of intelligent
systems when combined with machine learning and signal
processing techniques. An IoT with smart objects has many
applications in the field of surveillance [1], transportation [2],
crowd monitoring [3], etc. The term Internet of Vehicles (IoV)
has been defined whenever smart physical objects are vehi-
cles [4]. The number of vehicles is increasing exponentially as
a consequence of the rapid increase in world population and
the expansion of big cities. As a result, road accidents also
increase dramatically for various reasons, such as distracted
driving, adverse weather conditions, speeding, unavailability
of contextual-aware data, etc. These factors highlight the need
for making the objects “self-aware” and sharing these aware-
ness data among other objects, in order to develop and enrich
contextual awareness. Each object needs to be aware not only
of itself but also of the other objects and conditions of the
surrounding area.

Interconnectivity and efficient communication schemes are
required to develop such collective awareness (CA) among
smart objects which, in the case of intelligent vehicles, can
help assure the safety and efficiency in driving. By mak-
ing objects self-aware, each object would be able to detect
abnormal situations in the environment and make appropri-
ate decisions to avoid accidents, threats, or other dangerous
actions. If we consider a network of such agents that periodi-
cally communicate the acquired information among each other,
the future knowledge and actions of one agent can affect the
other ones’ behavior. For this reason, reliable communication
among agents is mandatory to let them successfully cooperate.
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However, the data exchange among objects can be adversely
affected by different factors, such as the distance among them,
the transmission delay, and the environmental conditions.

In this article, dynamic Bayesian networks (DBNs) [5] have
been used as data-driven models learned from sensory data
for the detection of abnormalities and the prediction of future
states of the agents. DBN’s are hierarchical probabilistic mod-
els that make it possible to filter observations received from
multiple sensors in order to understand and predict the possible
object states that have generated the observations themselves.
Data-driven DBN models require temporal dynamic relation-
ships among object states that are learned from training data
acquired along with the accomplishment of reference tasks
by the agent. Such learned dynamic models make it possi-
ble to analyze time series, i.e., time sequences of observations
acquired in successive experiences of the same type to esti-
mate if they occur in statistically normal (i.e., similar) ways.
A probabilistic density function (PDF), namely, the posterior
of unknown states conditioned over observations is the typical
recursive result obtained by a DBN filter at each time instant.
A specific class of DBN models is here used, i.e., switching
linear dynamic systems (SLDS) [6] or switching models. In
such models, it is possible to represent a complex nonlinear
dynamic behavior with a probabilistic sequential combina-
tion of linear dynamic models. Switching random variables
are used within the SLDS as higher level hidden discrete
variables one to one associated with different linear dynamic
models defined in the DBN. The joint posterior of state and
switching variable (superstate) of an object can be recursively
estimated within an SLDS. The Markov jump particle filter
(MJPF) [7] is an inference algorithm that allows estimation
of posterior and prediction to be performed when an SLDS is
available. Another example of the Bayesian inference approach
to be used for switching models, however dealing with non-
linear dynamic models, is Rao-Blackwellized particle filter
(RBPF) [8].

The first objective of this article is to make it possible aware-
ness functionalities are exhibited by each agent of a network
that is performing a collaborative task. The abnormality detec-
tion is considered as the first functionality necessary to reach
CA in the agent’s network. As abnormality detection should
be performed synchronously by all agents, communication
of information required to obtain it must be considered. To
achieve this goal, each agent has to learn in an offline train-
ing phase, a set of switching DBN models, one for each
object in the network that is executing a collaborative task.
In this way, during subsequent online situations, each agent
will be provided by a model of expected normal behaviors
of all agents in the network, including itself. A bank of
MJPF filters will be applied to each DBN by each agent
that provides an estimation of posteriors and predictions for
each agent. In addition, an MJPF is provided of an abnor-
mality detection capability, obtained by measuring the fitness
of the dynamic models to current data at different levels
of each DBN. Probabilistic distances between predicted pri-
ors and likelihood information inside each DBN node are
used for this purpose. The second objective is to assess the
impact of realistic information exchange among objects on

the abnormality detection feature of CA. With a reliable and
efficient communication, agents should be capable of shar-
ing ground-truth observations acquired in a distributed way
by each of them with all other agents in the network. Each
agent should dispatch appropriately the ground-truth obser-
vations received from each remote transmitting agent to the
appropriate MJPF where it can be compared with the respec-
tive state predicted by the relative DBN model to estimate the
possible presence of abnormalities. In this way, each agent can
estimate global abnormality conditions that can arise in any of
the agents that compose the network. The self-awareness (SA)
of single agents can so become CA of the agent’s network.
Different distributed communication schemes at an increasing
complexity can be devised to reach such a CA. The agents
could for example either communicate all their first-person
observations to each other and then apply MJPFs for all agents
to obtain abnormality estimation or communicate and share the
outputs of only their own MJPFs using locally observed data.
In this latter way, abnormality situations would be communi-
cated, and local observations could remain private within the
agent. In this article, a first analysis is provided to indicate
which communication strategy could be the best one depend-
ing on contextual parameters, such as the distance between the
agents, the transmission delay, and the achievable data rates
of the chosen communication protocol.

The main contributions of this article can be summarized
as follows.

1) A method is provided to learn normality models for situ-
ations providing training data series, models represented
as banks of DBNs. It is shown that an agent’s network
can use such learned models to online detect abnormal
situations that occur in any of the intelligent objects of
the network. Results of specific unsupervised learning
algorithms used in the training phase to estimate the
DBN models, like the GNG algorithm, are provided.
Also, the results coming from a specific SLDS inference
method working on learned DBNs, namely, an MJPF
model extended to become able to detect abnormalities,
are discussed.

2) The robustness of the distributed abnormality detection
feature of CA with respect to (w.r.t) a realistic com-
munication channel model are discussed; performances
are evaluated in order to assess, on the one hand, the
reliability and accuracy of abnormality detection under
perfect communication hypothesis, and, on the other
hand, the robustness is also analyzed of the system
model against packet losses and transmission delays of
the communication channel among objects.

The remainder of this article is structured as follows. Some
of the main articles and works in the literature regarding
self-aware vehicular networks are reported and summarized
in Section II. Section III reports our proposed strategy for
anomaly detection, describing in detail the principles exploited
in the training phase, the steps included in the test phase,
and how the communication among agents has been modeled.
The experimental setup and the communication system are
included in Section IV, and the proposed anomaly detection
scheme and the communication among objects are described
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in Section V. Conclusions and possible future work are drawn
in Section VI.

II. STATE OF THE ART

This section describes some of the related work regard-
ing the development of self-awareness in agents and how
such agents can perform better if they are part of a network.
According to the statistics, about 75 billion “things” will be
connected to the Internet by 2025, and a larger portion will
be vehicles [9]. The number of vehicles equipped with an
IoT technology is increasing as a consequence of the rapid
growth of vehicle numbers and the spread of the IoT tech-
nology, leading to a change from the conventional vehicular
ad hoc networks (VANETs) [10] concept to the IoV princi-
ple. Allowing intervehicles communication with the aim to
make them smarter and self-aware is the main principle of
IoV, where the concept of self-awareness mainly describes
the cognitive capability of living entities such as humans.
Self-awareness can be defined as the capability to observe
itself as well as the surrounding environment, i.e., contextual
awareness. If a vehicle is self-aware capable, it can be pro-
vided of models allowing it to detect abnormal situations and
consequently decide emergency actions before the situation
goes beyond its control. Moreover, such important information
has to be shared by communications with other vehicles in
the network to make all the surrounding entities aware of
the overall situation. This shared awareness is here defined
as CA.

Baydoun et al. [11] proposed an approach to develop a
multilevel self-awareness model by focusing on one agent.
The developed self-awareness approach is learned by using
multisensory data of a vehicle normally interacting in an
environment. The model allows the agent to become able to
detect abnormal situations present in its surrounding environ-
ment. The learning process of the self-awareness model for
autonomous vehicles based on data collected from human driv-
ing is described in another work [12]. Other related works in
this direction aim to enrich the experience of cooperative and
secure driving [13], [14].

Artificial intelligence (AI) and machine learning are two
multidisciplinary concepts which are growing in interest in a
number of research studies in the past few years. However, we
still lack a genuine theory that explains the underlying prin-
ciples and methods that would tell how to design agents that
can not only understand their environment but also be con-
scious of what they do. Moreover, agents have to understand
the purpose of their own actions to take a timely initiative
beyond the already programmed goals set by humans. Another
important aspect is that agents should be able to incremen-
tally learn from their own previous and current experiences
and share learned models with other agents. The issues men-
tioned above are not new, and researchers in various fields
of science (AI, cognitive science, neuroscience, and robotics)
have already addressed the problems in organization and oper-
ation of a system capable of performing perception, action,
interaction, and learning up to different levels of develop-
ment [15]. The term “cognitive architectures” is commonly

used in cognitive sciences, neuroscience, and AI communi-
ties to refer to propositions of system organization models
designed to mimic the human mind. Most of the previous
works that aimed at developing cognitive architectures did not
address the issue of self-awareness. Although, some neuro-
scientists have considered self-awareness as an expression of
consciousness [16], others propose to ground it in the robust
theoretical framework of integrated information theory [17].
First, it is required to investigate if and how a machine can
develop self-awareness and then how it can communicate with
other self-aware agents to achieve common goals. To do so,
it is important to understand the concept clearly and to pro-
pose a computational model that can account for it [18], [19].
To make the agent self-aware, it is crucial to develop and
integrate perceptual abilities for self-localization and environ-
ment interpretation, decision making and deliberation, learning
and self-assessment, and interaction with other agents. If we
could bring all those up to the implementation level, it would
be possible to make the agent self-aware, i.e., awareness of
being in control of its own actions and responsible for their
outcomes [20]. In addition to that, such an integration of the
results and characteristics of various subconscious delibera-
tive processes (such as perception, action, and learning) in a
shared global workspace [21] appears fundamental in humans
to enable metacognitive processes such as the ability to report
to oneself and to other agents about internal state, decisions,
and the way these decisions were made [22]. Additionally, it
is vital to develop predictive models of agents [23].

To bring IoT into its next cognitive level, more sophisti-
cated AI needs to be injected across the entire network to
make it self-aware. Currently, autonomous vehicles may com-
bine data from cameras, onboard sensors, and lidars, making
them intelligent and able to learn and adapt to each possible
situation. But if they are not connected, then we cannot call
them smart. Uber and Tesla are self-driving vehicles, but they
are not connected, and they do not cooperate with each other.
The two strong technology trends, one in the mobile com-
munications industry and the other in the automotive industry,
are becoming intermixed and will provide new capabilities and
functionality for future intelligent transport systems (ITS) and
future driving. As the vehicles are continuously growing more
aware of their environment due to the higher number of sen-
sors they are equipped with, the amount of interactions rises,
both in between vehicles and between vehicles and other road
users. As a result, the significance and reliance on capable
communication systems for ego things/machine to machine
(M2M) are becoming a key asset. On the other hand, the
mobile communications industry has connected more than five
billion people over the last 25 years, and the next step in wire-
less connectivity is to link all kinds of devices. According to
Ericsson’s technical mobility report published in 2017, around
29 billion connected devices are forecast by 2022, of which
approximately 18 billion will be related to IoT.

Baydoun et al. [11] proposed a method to develop a mul-
tilayered self-awareness in autonomous entities and exploit
this feature to detect abnormal situations in a given context.
Most of the related works [12], [24] use either position-related
information to make inferences or the agents are not connected
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Fig. 1. Block diagram: training phase and test phase.

to each other. In an autonomous agent, the information related
to the control plays a significant role in the prediction of future
states and actions of the entity. Moreover, it is imperative to
establish a reliable and accurate network among the agents to
allow them to communicate important awareness information
in order to make the entire network fully aware of the context
where the agents operate.

III. METHODOLOGY

This section first describes how the “awareness” can be
modeled into the things that can generate “ego things.”
ego things can be defined as intelligent autonomous entities
that can perceive their internal as well as external param-
eters and adapt themselves when they face abnormal situa-
tions. Second, we investigate how the network of such ego
things can establish timely and efficient communication to
develop CA.

The CA in a network of ego things is defined here as the
capability of a set of ego things in a network to understand
whether perception–action information processing models they
are provided of is performing in a normal way. The nor-
mality is defined in a Bayesian inference sense, i.e., as
the capability of dynamic models describing hidden object
state characteristics as confirmed by observations of avail-
able agents ego things’ sensors. Such an ability is provided
to each ego thing in the network and concerns the whole
set of agents. Communication is available in the network to
exchange information necessary to detect abnormalities of all
ego things by each agent in the network. Each ego thing can
so achieve awareness not only about the fitness of its own

models when predicting its own state but also about the pos-
sibility that abnormality conditions affect the actions of other
cooperating agents w.r.t predictions provided by their dynamic
models. Such a CA can trigger agents’ decision systems to
perform emergency routines or switching to other available
modalities.

The CA is based on detecting jointly and synchronously
abnormal situations present in the context. It allows appropri-
ate decisions that can be taken to maintain the stability of the
entire network of systems.

The ego things are equipped with various sensors. The
collected data from each ego thing have been initially synchro-
nized and then categorized into different groups. In this article,
we mainly consider the data related to the control part of the
ego thing along with the trajectory data in order to develop CA.
The proposed method can be divided into two parts: 1) offline
training and 2) online testing. A block diagram representation
of the proposed method is shown where offline training and
online processing carried on by each ego thing in the network
is shown in Fig. 1. During the offline training phase, each ego
thing learns probabilistic filtering models from agent sensors’
dynamic data series collected while collectively performing a
reference situation task. This implies that during the training
phase, all agents perform the task autonomously or in a teleop-
erated way. The collected data series provides information on
data collected by sensors’ observing esoperceptive and pro-
prioceptive data. By assuming that observation models can
remain invariant along the process (i.e., the model for esti-
mating state likelihood from sensory observations is given
and fixed), a set of dynamic models is learned, composed by
a discrete vocabulary of continuous conditional probabilities
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functions and by a transition matrix. Such models are orga-
nized within a DBN. Such a process is repeated for each agent,
and the set of DBNs related to each agent is made available
to the collective ensemble of ego things. In the online phase,
each DBN is used for filtering agent sensory data within each
agent. The comparison of learned dynamic prediction mod-
els with incoming observations allows each agent to estimate
the level of fitness and to measure abnormality of the col-
lective situation in a distributed way. However, to this end,
communications have to be maintained to allow each agent to
filter and detect abnormalities also of other ego things in the
network. Filtering is performed using a Bayesian filter appro-
priate for the type of DBNs learned, i.e., switching models.
An MJPF has been here chosen as dynamic probability mod-
els in learned DBNs are here linear and continuous Gaussian,
so allowing Kalman filters (KFs) to be used at a continuous
level in switching models. In Fig. 1, it is highlighted how such
filters are here provided of the additional capability of mea-
suring abnormalities, in addition to filtering, such capability is
at the basis of CA.

A. Offline Training Phase

In the training phase, each ego thing will learn a switching
DBN model for itself, i.e., from the data collected by its own
sensors, and one DBN model for each other ego thing present
in the network by exploiting the data generated by that ego
things sensors. In this article, ego things are autonomous vehi-
cles and the number of vehicles is limited to two. In Fig. 1,
the first part (gray shaded area) represents the training phase
of an ego thing and the steps followed to learn the switching
DBN models are explained as follows.

1) Data Preprocessing and State Estimation: First, the
collected multisensory data are synchronized by using their
timestamps. In this article, we considered as a case study
the data sequences related to two low dimensionality senso-
rial data, namely, odometry as representative of ego thing’s
esoperceptive sense of position and steering as propriocep-
tive control information of the ego thing. An initial basic
generalized filter [25] has been applied to the data sequence
for the estimation of generalized states. The generalized state
estimation of acquired data is described as follows.

Let Zen
k be the measurements in the ego thing en at the time

instant k and Xen
k be the state associated to the measurement

Zen
k , such that Zen

k = g(Xen
k ) + ωk. g(·) is the function that

maps states into observations and ωk represents the noise of
the sensors. Similarly, en will also have measurements from
all the other ego things in the network, which can be repre-
sented as Ze1

k , . . . , Zen
k , . . . , ZeN

k , n ∈ N , n �= n, where N and
N are the number and the set of ego things in the network,
respectively.

As explained in [26] and [27], including time derivatives in
hidden object states allows dynamic probabilistic flow mod-
els describing ego thing states to be one to one related with
descriptors of motion laws coming from the mechanical statis-
tic, i.e., Lagrangian. Such flow models are represented in the
moving reference system of each ego thing so allowing data
series to be described as relative not only to the estimated

state of the object but also to how such a state is instanta-
neously changing. The generalized state of en by considering
only itself can be defined as

Xen
k =

[
Xen

k Ẋen
k Ẍen

k · · · X(L)en
k

]ᵀ
(1)

where (L) indexes the Lth time derivative of the state.
The lth time derivative in en at time k by considering only

itself can be approximated as

X(l)en
k = X(l−1)en

k − X(l−1)en
k−1

�k
(2)

where X(0)en
k = Xen

k and �k is the uniform sampling time for
all multisensory data.

The generalized state of en by considering all the ego things
in the network can be written as

Cen
k =

[
Xe1

k Xe2
k Xe3

k · · · XeN
k

]ᵀ
. (3)

2) Clustering by GNGs: When a data series is available,
a generative filter capable of generating other instances pro-
vided of the same statistical properties as well as to predict
future states has to be learned. Generative filters here used
are hierarchical switching 2-time-slice DBNs (2T-DBN) [28].
This generative filter, as shown in Fig. 2, is composed of
hidden states at continuous and discrete levels. Generalized
states are here used at the continuous level. Discrete hidden
states are hierarchically higher and represent switching vari-
ables. For each value of such random variables, a different
dynamic model has to be learned at the continuous level capa-
ble of predicting in a different way dynamics of states. This
type of DBNs is capable of representing nonlinear dynamic
models by using a set of linear dynamic models. In order to
learn such DBNs, the vocabulary of switching variables and
the associated set of dynamic linear models must be learned
from the data. To this end, having used generalized states are
particularly useful. In fact, a technique can be used as in [25]
that allows defining an initial basic generalized filter [26]
that operates on data series to produce an estimation of the
dynamic model that should be associated to each state sparse
point obtained by filtering the data sequence. Such a technique
consists of an initial filter based on a single value switching
variable; such a value corresponds to a unique dynamic model
that assumes no state change should be associated with values
in the data series. When a data series violates this assumption,
obtained derivatives of the state correspond to errors w.r.t such
a hypothesis. Errors can be clustered to define a set of state-
dependent linear dynamic models characterizing the state as
varying according to average derivatives and their covariances.
Jointly clustering in an unsupervised way states and errors
allow one to obtain a vocabulary of regions. Each region is
characterized by a compact part of the state space and by a
compact subspace of the derivative state space. The average
state derivative in the region subspace defines a different filter
for each compact state subspace. Here, we used an unsuper-
vised clustering approach, the GNG [29] method to obtain
regions from generalized errors produced as outputs by the
initial filter, i.e., sequences of coupled state estimations and
errors. GNG clusters correspond to coupled compact regions
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Fig. 2. CDBN model.

of state points and errors. Derivative errors cluster encodes
the description of the expected dynamics that caused the data
series to vary instead of following the hypothesis of the ini-
tial filter. Different ways of changing are coded as behaviors
that have been found in a corresponding compact state region.
The compact state region represents switching variables in the
hierarchical DBN. GNG is not the unique possible cluster-
ing algorithm that could have been employed. The K-means
clustering [30], self-organizing map (SOM) [31], neural gas
(NG) [29], etc., are other possible choices. In comparison to
K-means and SOM, an NG converges faster and also it has
other advantages. The GNG algorithm is an improved version
of the NG algorithm. In comparison to NG, it does not need
any dynamically modifiable parameters. The GNG algorithm
extends the NG algorithm by adding a local error measure
for each node. A second addition here used, first proposed
by Fritzke [33], is the utility measure. By considering all
the aforementioned advantages, we chose to use the GNG
algorithm in this article.

The output of GNG consists of a set of clusters defined
as nodes. In the proposed approach, a separate GNG cluster-
ing is applied to states and derivatives obtained from the initial
filter. Each node groups a subset of samples of states or deriva-
tives that have a low distance w.r.t the center of mass of the
region associated with the node. The iterative presentation of
the same set of samples allows the reorganization of nodes
averages until convergence is reached. Nodes produced by
GNG can be seen as a set of letters forming a vocabulary. A
different vocabulary is formed for GNGs working on state and
derivative samples produced by the initial filter. Nodes associ-
ated with the GNG working on derivatives form a vocabulary
of dynamic linear models. The flow model of each dynamic
model is defined by the center of mass of the error in the
respective node. On the other side nodes associated with the
GNG working on states defines a vocabulary of regions, i.e.,

switching variables of the state space. The set of nodes pro-
duced as output by GNG l, i.e., related to the lth derivative
order, of the ego thing en can be defined as

V(l)en =
{

V(l)en
1 , V(l)en

2 , . . . , V(l)en
G(l)en

}
(4)

where G(l)en is the set of nodes of the GNG l related to ego
thing en’s lth derivative of the state.

V(l)en
n defines the node, and it is considered as a Gaussian

random variable whose mean value is the average of samples
and whose size corresponds to the variance of the samples
themselves. V(l)en can be seen as a vocabulary of order l
composed by the relative nodes. The switching variables at the
highest level of the DBN model learned by GNGs so computed
in Fig. 2 is the switching variable. Such a variable assumes
values from the vocabulary learned by GNG working at the
state level l = 0. Each region can so be seen as a switching
variable. Each value of the variable indexes a region in the
continuous state space corresponding to a Gaussian having as
mean and covariance associated with the node. The dynamic
model associated with that region is found by identifying a
letter in the vocabulary of higher derivatives GNG nodes that
specifies the velocity and higher order generalized coordinates
of a set of dynamic models that can be associated with the state
region.

The compact regions of the derivative state space form a
vocabulary composed of symbols associated with different
dynamics of generalized states Xen

k . In this article, general-
ized states include only states and their first order derivatives
such as Xen

k = [Xen
k Ẋen

k ]ᵀ. A generic element (letter) of the
vocabulary describing clusters of state derivatives can be asso-
ciated with an equation of a dynamic model to be used by a
linear filter. Such a model can be written as

Xen
k+1 = AXen

k + BUk + wk (5)

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on February 28,2021 at 17:41:24 UTC from IEEE Xplore.  Restrictions apply. 



3780 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 5, MAY 2020

where

A =
[

Ij 0j,j

0j,j 0j,j

]
; B =

[
0j,j

Ij�k

]

variable j is related to the dimensionality of the state vector for
data under consideration. Ij is an identity matrix of dimension
j. 0j,j is a zero j × j matrix. wk ∼ N (0, σ ) encodes the noise
produced by the system. Uk is a control vector that is defined
from the average derivative of states obtained by GNG within
a dynamic model region. The dynamic model to be chosen is
the one of the state regions to which Xen

k belongs. A different
dynamic model can be associated to different letters describing
the same state space region.

By combining letters of nodes produced by GNG working
on different derivatives, it is possible to obtain a set of words
which define discrete states combined with dynamic models,
so providing a semantic vocabulary whose elements combine
centroids of different derivative orders. Such words computed
at ego thing en are defined as

Wen =
{
ϕen, ϕ̇en, . . . , ϕ(L)en

}
(6)

where ϕen ∈ V(l)en. Wen contains all possible combinations
of switching variables and dynamic models. The switching
variable acts as a variable at a higher hierarchical level that
explains the states from a semantic viewpoint. The discrete
switching variables (i.e., letters and words) of the learned DBN
model are shown in the pink shaded area in Fig. 2.

3) Estimation of State Transition: The vocabularies are
learned by applying initial filters and GNG clustering to each
ego thing en sensory data acquired along with a coopera-
tive task performed with other ego things. For example, in
Scenario 1 (refer Section IV), a cooperative driving task of
two autonomous cars is considered. In order to allow each ego
thing to develop models that consider time evolution not only
at continuous level but also as probabilistic transitions among
words in the learned vocabularies, timestamps are assumed to
be provided to data series and transition models to be used
at the discrete level of DBNs are estimated. Such transition
models allow switching variables to be predicted probabilis-
tically at each moment by the DBN. Moreover, as the DBNs
estimate at each time, a joint posterior probability over switch-
ing models and continuous states, the predictions provided by
the transition model can be used as a source to obtain a fur-
ther measurement of semantic abnormality. In particular, if
predicted words do not match with evidence supported by
observations of one agent, then such an agent can occur in
a semantic abnormality.

The probabilistic transition matrix has been estimated from
the data sequence by considering the transitions in time and
such a matrix can tell the mapping of the variables in discrete
space (i.e., word space). In other words, it can tell the prob-
ability of transition from word Wen

k at time instance k to the
word Wen

k+1 in the next time instance k+1 shown in Fig. 2. We
use this information for prediction purpose at the word level.

4) DBN Model for All the Agents: All the previous steps
are the step-by-step learning process of the switching DBN
models. Each ego thing learns a total number of N switching
DBN models in order to predict the future states of each entity

in continuous as well as discrete levels. The set of DBNs
learned by each ego things ei and ej is the same for each
other ego thing in the network, and can be written as

DBNei =
{

DBNe1, . . . , DBNeN
}

= DBNej ∀i, j ∈ N . (7)

The number of DBNs learned can be represented as shown
in Fig. 2. In each DBN, there are three levels, such as mea-
surements, continuous, and discrete levels. The arrows and
links (colored in black) of such DBN are learned based on
Scenario 1 task (see Section IV). Moreover, the red and blue
dotted arrows represent the influence of one ego thing’s action
to the future states of the other ego things in the network.
These dotted arrows represent how one ego things action can
be influenced by the future actions of the other ego things in
the network and vice versa.

B. Online Testing

In Fig. 1, the second part (shaded in blue) shows the block
diagram representation of the online test phase. In this phase,
we have proposed to apply a dynamic switching model called
MJPF [34], [35] to make inferences on the DBN models
learned in the training phase as shown in Fig. 2. An MJPF
is a Bayesian filter with a KF associated with each particle. In
MJPF, we use a KF [36] in state space (gray shaded area) and
particle filter (PF) [37] in a higher hierarchical level called
word level (pink shaded area) in Fig. 2. The blue and red
arrows in Fig. 2 depict the information exchange between two
ego things, and, as a consequence, two DBN models. Those
arrows tell how the future states of one ego thing can influence
the next states of the other one.

1) Estimation of Future States: The MJPF is able to predict
and estimate discrete and continuous states of the ego things.
In addition to that, it produces another information, i.e.,
abnormality measurements.

The data sequence (experience) never seen in the online
training step is preprocessed and given as input to the MJPF
applied on learned DBN models. The output of each MJPF is
the estimation of future states of the associated ego thing along
with the probabilistic and spatial abnormality measurements.

MJPF uses PF for discrete variables, here corresponding
to word variables; each particle used to approximate the joint
posterior in MJPF is augmented with an associated continuous
random variable characterized by a Gaussian probability. In
our case, the dynamic model describing changes of the contin-
uous variable associated with a given word value is represented
as in (5), while the transition model is used as a dynamic
model at the word level. In the prediction step of the MJPF,
an SIR [38] PF approach is used to predict new candidate par-
ticles at the next step using a transition model at a discrete
level. Each particle is enriched also of a Gaussian prediction
of the continuous associated variable. This is done as in KF,
being dynamic models and observation models linear and vari-
able Gaussian. Each predicted particle is so characterized as a
word of given value with an associated prior probability at the
continuous level. In the update step, the ground-truth observa-
tions (belonging to each ego thing) are used to first update the
prior at continuous level, so obtaining the new posterior, and

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on February 28,2021 at 17:41:24 UTC from IEEE Xplore.  Restrictions apply. 



THEKKE KANAPRAM et al.: COLLECTIVE AWARENESS FOR ABNORMALITY DETECTION IN CONNECTED AUTONOMOUS VEHICLES 3781

then providing a new weight to the particle word, based on the
evidence that such a posterior provides to the specific word
itself. In our approach, these traditional MJPF are enriched by
the computation of abnormality measurements as described in
the next section, to allow agents to be aware of the fitness of
their dynamic models to the observed sequences.

The posterior probability density function of MJPF belongs
to ego thing en can be written as

p
(

Wk
en, Xk

en/Zk
en

)
= p

(
Xk

en/Wk
en, Zk

en
)

p
(

Wk
en/Zk

en
)

(8)

where Wk
en is the word in the higher hierarchical level and

Xk
en is the continuous state in the state space that belongs to

ego thing en at time instant k.
As stated above, a different KF is associated with each par-

ticle Wk
∗ and is different for each discrete zone (cluster).

Equation (8) shows the link between the discrete state (i.e.,
words) and continuous state estimation. The KF associated
to particle Wk

∗ is used to estimate the prediction on the
continuous state Xk

en and to estimate p(Xk
en/Wk

en, Zk
en).

As explained before, each ego thing has its own switch-
ing model as well as the model of other ego things. At each
instant, the ego thing predicts its own future states and future
states of the other ego things by the learned switching DBN
models. By receiving the ground-truth observations, the ego
thing can match with the predicted states and detect if any
anomalies present. The observations from other ego things
can be received through the established wireless channel with
a certain delay and loss. By making efficient communica-
tion between ego things, we can develop a CA in the entire
network of ego things. Such CA can tell if any abnormal
situations happen anywhere in the network. Moreover, the col-
lective DBN (CDBN) models can handle the uncertainty of the
environment and the variability of observations.

2) Abnormality Detection: The posterior probability esti-
mation in MJPF is here enriched with computation of addi-
tional information useful for self-awareness of individual ego
things, i.e., abnormality measurements. Such information is
estimated to instantaneously allow each ego-thing to mea-
sure how well the learned models fit the currently observed
sequence. To estimate the abnormality of a sequence, a statisti-
cal distance metric is here proposed that estimates the distance
between predictions performed within MJPF at discrete and
continuous levels and the sensory observations produced along
with an ego thing experience. In this article, the Hellinger dis-
tance (HD) [39] is proposed as the metric to evaluate sequence
abnormality.

Some important statistical distances include the
Bhattacharya distance [40], HD [39], total variation dis-
tance [41], etc. The Bhattacharyya distance measures the
similarity of two probability distributions. It is closely related
to the Bhattacharyya coefficient, which is a measure of
the amount of overlap between two statistical samples or
populations. Similarly, the HD (closely related to, although
different from, the Bhattacharyya distance) is used to quantify
the similarity between two probability distributions. The
HD is defined between vectors having only positive or zero

elements [42]. The data sets in this article are normalized,
so the values vary between zero and one; there are not any
negative values. For this reason, HD is more appropriate
than using other distance metrics as an abnormality measure.
The works in [35] and [43] used HD as an abnormality
measurement.

In this article, HD is used as an abnormality measurement
between predicted generalized states and observation evidence.

The HD related to the ego-thing en can be written as

θen
k =

√
1 − λen

k (9)

where λen
k is defined as the Bhattacharyya coefficient [44],

such that

λen
k =

∫ √
p
(
Xen

k |Xen
k−1

)
p
(
Zen

k |Xen
k

)
dXen

k . (10)

The variable θm
k ∈ [0, 1], where values close to 0 indicate

that ground-truth observations match with predictions; whereas
values close to 1 show the presence of an abnormality.

Once detected abnormal situations, the ego thing has to take
appropriate actions either by stopping itself or reducing the
speed, etc. However, the decision making part is not included
in this article.

C. Evaluating the Model Performance After the Packet Loss

Each ego thing has its own model for prediction of the
future states and the ground-truth observations received from
the sensors to check whether if any anomalies present in the
environment around it. At the same time, the models for other
ego things can predict the future states and receive ground-
truth observations from the corresponding ego things with a
certain delay and loss in transmission. The DBN model of each
agent is updated sequentially (with a certain delay) using the
shared information. The delay and the loss depend on various
factors, such as the distance between ego things, the employed
communication protocol, modulation scheme, and frequency,
scenario conditions (urban, rural, . . .), etc.

To check the model performance in predicting abnormal
situations, the true positive rate (TPR) and the false positive
rate (FPR) are calculated to build a set of receiver operating
characteristic (ROC) curves [45] that corresponds to different
K factor values [46]. The ROC curves plot TPR and FPR at
different thresholds, where

TPR = TP

TP + FN
; FPR = FP

FP + TN
. (11)

The true positive (TP) is defined as the number of times
where abnormalities are correctly identified. The false nega-
tive (FN) consists of the times that abnormalities are classified
incorrectly. Accordingly, the false positive (FP) represents
the times where anomalies are wrongly assigned to nor-
mal samples and the true negative (TN) represents the times
where normal samples are correctly identified. In this arti-
cle, mainly considered two parameters of ROC for measuring
the performance of the model before and after the trans-
mission loss are: 1) the area under the curve (AUC) of the
ROC curves, which quantifies the performance of the DBNs’
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abnormal detection at several thresholds and 2) the accuracy
(ACC) measurement, which is defined as follows:

ACC = TP + TN

TP + TN + FP + FN
. (12)

1) Communications Among Ego Things: In the training
phase, we assumed that each ego thing has available all
the required data describing all the other ego things’ status.
However, in a real scenario, data exchange among ego things
through a wireless mean has to be considered. Different vari-
ables affect communication performance over time. They are
mainly related to:

1) objects’ movement, such as object’s velocity, accelera-
tion, and moving direction;

2) environment where the objects are located, such as urban
or rural scenario, presence of obstacles, and Line-of-
Sight (LoS) or Non-LoS (NLoS) conditions;

3) chose communication parameters, such as employed
communication protocol and modulation, exploited
frequency band, achievable data rate, transmission
power, and received signal strength.

The channel among ego things has to be properly mod-
eled in order to consider all the effects which can affect
the obtained performance, such as scattering, diffraction,
reflection, shadowing, and fading.

The effects on the wireless channel are addressed by large-
scale and small-scale channel models. Large-scale models
cover effects, such as path loss and the effects of the propaga-
tion environment over large distances. Small-scale models, on
the contrary, describe the behavior in the time domain, taking
into account the fast fading effects, i.e., multipath propagation.
Large- and small-scale models are combined to realistically
shape channel behaviors. The received power Pr is composed
of the transmit power Pt, the large-scale effects, i.e., path loss
PL, and the small-scale effects ζ

Pr = PtPLζ. (13)

The path loss is the radio attenuation due to the commu-
nication mean. It is mainly affected by the communication
frequency f and the distance d between source and destination.
It can be computed as

PL =
(

λ2

(4π)2dα

)
GRGT (14)

where λ = 2π f , α is the attenuation factor and GR and GT

are the reception and transmission antenna gains, respectively.
The presence of objects and obstacles in the environment

originates multiple copies of each transmitted signal, which
can strengthen (if ζ > 1) or weaken (if ζ < 1) the origi-
nal signal. This effect is called multipath fading and can be
modeled as a Rayleigh, Rician, or Nakagami distribution.

Considering the current state of the art, we focus on a
Rician channel model based on a Rice distribution when LoS
is present. A Rice distribution can be expressed with parame-
ters K and Pr, which are the Rician K-factor and the received
power, respectively, or as a function of ρ and σ , which are
field strength of the LoS component and the field strength of
scattered components, respectively.

The Rice distribution is

pZ(z) = z

σ 2
exp

(−z2 − ρ2

2σ 2

)
I0

( zρ

σ 2

)
(15)

where z ≥ 0, and ρ and σ are the signal strength of the dom-
inant and the scattered paths, respectively. Therefore, ρ2 and
2σ 2 are the average power of the LoS and NLoS multipath
components, respectively. As the direct wave weakens, the
Rice distribution becomes Rayleigh.

The Rician K-factor is defined as

K = ρ2

2σ 2
0

. (16)

It expresses the ratio between the dominant component and
scattered waves. The stronger the LoS component, the greater
the K factor. In this way, the Rice distribution in (15) can be
expressed in terms of linear K factor as

pZ(z) = 2z(K + 1)

Pr
exp

(
−K − (K + 1)z2

Pr

)

× I0

(
2z

√
K(K + 1)

Pr

)
(17)

where I0 is the modified Bessel function of the first kind and
the zero order [47]. When K → ∞, the Rice distribution
tends to a Gaussian one, and when K → 0, i.e., in case no
dominant direct path exists (ρ = 0), the Rician fading reduces
to a Rayleigh fading defined by

pZ(z) = z

σ 2
exp

(
− z2

2σ 2

)
. (18)

A more general fading distribution was developed whose
parameters can be adjusted to fit empirical measurements. This
distribution is called Nakagami and is given by

pZ(z) = 2mmx2m−1

�(m)Pm
r

exp

(−mz2

Pr

)
. (19)

The Nakagami distribution is parametrized by Pr and the
fading parameter m. For m = 1, it becomes Rayleigh fading,
instead for m = [((K + 1)2)/(2K + 1)] the distribution is
approximately Rician with parameter K.

IV. EXPERIMENTAL SET UP

The scenario considered to validate the proposed methodol-
ogy consists of two intelligent vehicles called iCab (Intelligent
Campus Automobile), shown in Fig. 3(b), with the capabili-
ties of autonomous driving [48]. The vehicles are equipped
with different sensors, such as one lidar, a stereo camera, and
encoders. Information about the control of the vehicles, i.e.,
steering angle (s) and power (p), along with the odometry
data (x and y positions) are the data exchanged during the
operative process. After collecting the data sets, a synchroniza-
tion operation is performed in order to perfectly synchronize
the collected data sets. The two vehicles follow the same
movement trace, shown in Fig. 3(a), keeping their position
one after the other. For this reason, the iCab1 vehicle is
called leader and the iCab2 vehicle is called follower. The
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Fig. 3. (a) iCab platforms. (b) Testing environment. Vehicles and the envi-
ronment used for the experiments.

Fig. 4. Position data for perimeter monitoring task.

dimension of the movement trace in the testing environment
is 38 m × 33 m.

To test the anomaly detection model, we used the data sets
from the vehicles while they perform two different actions in
the same test environment. The scenarios are as follows.

1) Scenario I (Perimeter Monitoring): iCab vehicles per-
form platooning operation in a closed environment, as
shown in Fig. 6. In total, four laps (i.e., the platooning
operation has been performed four times one after the
other) has been performed and collected the data. The
follower vehicle mimics the actions of the leader vehi-
cle. This is the scenario used in the training phase to
learn the switching DBN models.

2) Scenario II (Emergency Stop): While both vehicles are
moving along the rectangular trajectory of the perimeter
monitoring task, a pedestrian suddenly crosses in front
of the leader vehicle. As soon as the leader detects the
presence of the pedestrian, the vehicle automatically exe-
cutes an emergency brake and waits until the pedestrian
crosses and then continues the task. At the same time,
the follower detects the anomaly in the state of the leader
and it also performs a stop operation until the leader
starts its movement again. The data sets from this sce-
nario have been used to test the switching DBN models
learned in the training phase. We have used about 30%
of the data sets to test the learned DBN models.

Fig. 4 plots the one lap (from the four laps) odometry (x
and y positions) data for the perimeter monitoring task. Fig. 5
shows the steering angle w.r.t the vehicle’s position [Fig. 5(a)]
and the rotor power w.r.t the vehicle’s position [Fig. 5(b)].
For simplicity, in Fig. 5, we plotted only the data from one
lap (i.e., about 800 data points).

To test the reliability and quantify the expected delay of
the data exchange between the two vehicles, we have used
the ONE simulator [49]. It is a network simulator designed
for testing communications among moving objects. Moreover,
we have analyzed how the packet loss and delay affect the
proposed learned DBN models for abnormality detection.

Considering the current state of the art, the IEEE 802.11p
protocol is one of the most feasible and widely considered
in the intervehicles communication scenario, especially in
autonomous vehicle networks [50].

A new interface has been created in the ONE simulator in
order to be able to model the intervehicle channel as a Rician
channel and to set different values for its parameters, including
transmitted power, central frequency, and Rician K-factor.

We assumed that the data to be communicated between the
ego things are: XY position, steering angle (s), and power
(p) of the rotor of the iCab vehicles together with a times-
tamp. In this way, we assume that the amount of data to be
sent is 4 B for the position, + 2 B for the steering angle, +
2 B for the rotor power, and + 4 B for the time stamp. The
total data payload size is 12 B. Assuming UDP, IP, and IEEE
802.11p as transport, network, and data link layer protocols,
respectively, the overall size of each data packet is 12 + 8+
20 + 28 + 6 = 74 B.

V. RESULTS

Results of offline learning of DBN models are here not
described in all their steps but just providing some gen-
eral overview. Then, the application of models learned in the
online test phase is described in more detail to highlight their
application to the agents of the ego thing network.

A. Offline Training Phase

In order to collect training and test data sets, the vehicles
performed platooning operation four times one after another.
The size of each data sequence is about 3200 (i.e., 800 samples
per each). The null force filter [25] with a single switch-
ing variable corresponds to a unique dynamic model that
assumes no state change produces error sequence when the
data sequence violates from this rule. The DBN model in the
discrete level (i.e., word level) has been learned separately
for each ego thing while they were doing the same cooper-
ative task. The initial filter [25] has been applied to all the
agents in the network. The error sequence produced by this
initial filter has been clustered to define state-dependent linear
dynamic models characterizing the state as varying according
to average derivatives and their covariance.

The total number of clusters (nodes) obtained by clustering
the states and errors (obtained from the initial filter) was 35 for
state space and also 35 clusters for state derivatives with cor-
responding dynamic models. The GNG reached convergence
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Fig. 5. Control variables plotted w.r.t position. (a) Steering angle w.r.t position. (b) Power w.r.t position.

Fig. 6. Scenarios considered for the anomaly detection test.

in this number. Each node cluster corresponds to a letter w.r.t
respective vocabularies, and the word list has been composed
by the different possible combinations of letters from state
and state derivative vocabularies (i.e., switching variables and
related dynamic models). Then, a unique label is given to each
letter combinations, and finally, 442 such unique combinations
of letters (i.e., words) were kept. A transition matrix at the dis-
crete level was then estimated for each agent whose size was
442 × 442. This information constitutes the DBN model of
the MJPF filter to be applied to each agent.

B. Online Test Phase

In the online test phase, the data set of scenario II, i.e., emer-
gency stop (refer Section IV), has been employed to check the
prediction capability of switching DBN models learned in the
training phase and to detect the presence of abnormal situa-
tions in the environment. The model was able to detect the
abnormality situation due to the emergency brake obtaining

high values of the HD metric, as shown by the red part in
Figs. 7 (iCab1—leader) and 8 (iCab2—follower).

As can be seen in both figures, there is a significant rise in
the HD abnormality measures during the abnormality intervals.
However, the abnormality peak of the follower vehicle is not
as high as the leader’s one. The main reason is that after the
emergency stop of the leader, the follower gradually decreased
its speed rather than doing an emergency brake. We set the
abnormality threshold to 0.4 (indicated by the blue dotted line
in Figs. 7 and 8) considering the average HD value of 0.2
when vehicles operate in normal conditions.

As described before, both vehicles have their own DBN
model as well as the model for other vehicles. We have shown
here the performance of the DBN model for the leader vehicle
in the leader itself and the follower by plotting ROC curves
and comparing AUC and ACC parameters. The model for the
leader in the follower vehicle can predict the future states of
the leader vehicle and detect if any abnormal situations present
in the environment around the leader vehicle. Once the fol-
lower vehicle detects the abnormal situation of the leader, it
should adapt its own behavior by changing its future action
by appropriate decisions. It should be pointed out that in this
article the focus is on abnormality detection as a basic step
of CA, while the impact on such additional information on
decision making and online learning of new actions is beyond
the scope of this article. The important factor that needs to
be considered here is the effect of the communication channel
over the transmitted data between the vehicles. Such trans-
mission loss causes the performance degradation of the DBN
model and consequently the abnormality detection capability
as well.

The DBN model for the leader vehicle inside the follower
vehicle estimates the abnormality situation of the leader after
receiving the real-time observed data (i.e., steering angle and
power) from the leader over the wireless channel. Due to the
impact of the communication channel over the transmitted
data, the DBN model performance decreases, and we have
investigated how it affects the capability of detecting abnormal
situations. The performance measure we used in this article
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Fig. 7. Abnormality measurements plot for iCab 1.

Fig. 8. Abnormality measurements plot for iCab 2.

TABLE I
SIMULATION PARAMETERS [52]

Fig. 9. Receiver operating curve (18 Mb/s).

is ROC curve parameters, such as AUC and ACC. The main
factors that affect the transmission loss are the data rate of dif-
ferent modulation schemes, the distance between the vehicles,
and the Rician K-factor.

The IEEE 802.11p standard operates at 5.9-GHz central
frequency, offers 10-MHz bandwidth, and allows sending data
with different modulations and data rates range from 3 to
27 Mb/s [51]. We have fixed a maximum communication
range to 100 m, considering that the data loss is consider-
able and beyond a possible realistic reliability requirement if

Fig. 10. Receiver operating curve (27 Mb/s).

the distance is higher. We performed different tests changing
the values of data rate, modulation, and K-factor as shown in
Table I. High K-factor values refer to rural scenarios where
the presence of obstacles, buildings, etc., has a lower impact
on the achieved performance. The sensitivity column shows
the minimum values of the signal-to-noise ratio (SNR) at the
receiver to guarantee a successful data reception [52].

The DBN model performance in terms of ROC curve has
been plotted for the leader vehicle for data rates 18 Mb/s in
Fig. 9 and 27 Mb/s in Fig. 10, respectively. These figures
show the reliability of the communications in different sce-
narios from completely rural (K = 3) to urban (K = 0). The
blue curve refers to the case without transmission among ego
things, i.e., the ideal case of complete knowledge, and has
been inserted as a comparison.

When the data rate is 18 Mb/s, our learned DBN model
performance is not degrading much as compared to the no
transmission loss case, the performance is in the acceptable
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Fig. 11. Distance versus time.

Fig. 12. Delay versus time.

Fig. 13. Received power and packet losses.

TABLE II
ROC FEATURES: DATA RATE = 18 Mb/s

range and the model well predicts the abnormal situations. The
performance degradation (in terms of AUC) and the accuracy
in prediction (in terms of ACC) for 18- and 27-Mb/s data
rates are summarized in Tables II and III, respectively. When
the environment changes from rural to suburban to urban, the
performance of the model again degrades. Finally, when in the
case of no LoS component (LOS) (K = 3), the value of AUC
and ACC in the ROC curve are further reduced.

Moreover, the distance between the vehicles plays a role in
packet losses. To analyze the relationship between distance,
delay, and data packet loss, we focused on scenario I but
changing the velocity trace of the follower, in order to let
the distance among them change during the simulation.

Figs. 11 and 12 show how the distance between the two
vehicles and the communication delay between them change
over time, respectively, while the received SNR (blue plot)

TABLE III
ROC FEATURES: DATA RATE = 27 Mb/s

and the data packet losses (green dots) are shown in Fig. 13.
It is evident from the figures that when the distance increases
the packet loss also increases. Fig. 13 also shows the power
in free space (red line) and sensitivity threshold (light blue
line) of the power corresponds to the data rates we considered
and finally the lost packets as it did not satisfy the threshold
limit of the minimum received power. The overall amount of
packets lost is shown in Table IV.

Considering the shown results, different considerations can
be pointed out about which data ego things should exchange
to increase the reliability of the described system. For exam-
ple, if the current distance between vehicles allows obtaining
a packet loss ratio below a certain threshold, the vehicles can
decide to communicate the ground-truth observations to the
other vehicles in the network to better detect if there are any
abnormalities in the environment. Otherwise, if the vehicle
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TABLE IV
PACKET LOSS RATIO FOR DIFFERENT K VALUES

AND DIFFERENT DATA RATES

approaches the border of the transmission range or the dis-
tance between them exceeds a certain threshold, it would be
more appropriate to communicate only the abnormality mea-
surements as soon as it detected rather than communicating all
the ground-truth observations. The transmission loss is directly
proportional to the distance such that if we transmit more data,
the loss also increases. To reduce the impact of false alarm or
missed detection in sensing the abnormal situation, in such
situations (higher distances), communicate only abnormality
measurements could be more appropriate to give an indica-
tion to other ego things in the network. Although in small
distances, it is recommended to exchange the observed data
itself to detect abnormalities with an acceptable delay.

VI. CONCLUSION

This article proposed a method to develop a CA model and
to recognize abnormal situations in smart object networks.
Each entity learns a CA model (i.e., a set of DBN mod-
els) describing the normal behavior of itself and all the other
entities in the network. The considered abnormality metric is
based on the HD between the predicted states by the learned
DBN models and the real-time ground-truth observations. An
MJPF is employed to infer the future states of the entities.
The abnormality metric values calculated in each of the DBN
models suggest that our method provides good performance
in detecting the environmental abnormalities. Moreover, the
information exchange among entities has been considered in
order to enhance the proposed strategy.

The considered test scenario is composed of two smart
vehicles, one (the follower) following the other (the leader),
which moves along a predefined track. The communication
performance has been collected in order to verify the reliabil-
ity of the data exchange, quantify the expected performance
in terms of delay and loss and consider how these perfor-
mances could affect the abnormality detection process. We
investigated the DBN model performance in the case where
each object communicates the ground-truth observations to the
other entities in the network. To compare the performance with
different parameters of the considered channel model (Rician
model), such as K-factor, distance, and data rates, we have
plotted ROC curves and calculated the reliability (AUC) and
accuracy (ACC) metrics.

In the future, this article can be extended by learning new
DBN models whenever the entities pass through the new expe-
riences. Another direction could be optimizing the model in a
way that the same model could be used for all the objects in
the network only by changing specific parameters. Moreover,

the design of a decision-making module capable to use abnor-
mality situations w.r.t available DBN models in order to adapt
its own actions in unknown scenarios (by considering different
test scenarios) is a topic of future directions of the research.
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