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Abstract—This paper outlines a unified view of machine learn-
ing and control for the optimization of a communication system.
The problem of equivalent bandwidth is taken as a reference. A
dedicated classification technique is used to derive insights into
the structure of the problem by means of boolean rules over the
variables of the system. The approach is of particular interest for
many settings in which only measurements of the performance
are available. Simulations corroborate the quality of the proposed
technique.

I. INTRODUCTION

Classification techniques developed in machine learning
research are often used in many communication disciplines
to assess the influence of system variables when analytical
models can be hardly derived. The acquired knowledge can
then be used to drive adaptive control of performance metrics.
Quite a few works follow this principle (see, e.g., [1], [2],
[3]), without entering into the details of the generalization
capabilities of the adopted approach.

In this letter, classification and control are formulated in a
unified way. The focus is on the concept of Equivalent Band-
width (EqB), namely, the satisfaction of Quality of Service
(QoS) for a set of traffic connections in a high-speed network,
but the inherent generalization to other communication settings
(overlay or ad-hoc networks) is straightforward because the
methodology is only based on performance samples available
from the system.

The choice of formulating the control problem for EqB has a
motivation on its own. Analytical models are not available for
some QoS metrics (loss, delay, jitter) when the stochastic be-
havior of input traffic does not allow closed-form expressions
(e.g., under the Poisson assumption of packets interarrival
time). In those cases, measurement-based algorithms are in
general adopted [4], [5], but their application is not always
immediate because they may need an accurate tuning of the
algorithms (see, e.g., the adoption of the Dominant Time Scale
principle of [5] or the setting of the gradient stepsize in [4] or
of the ‘proportional-integral-derivative controller’ parameters
in [6]).

The proposed approach guarantees a high degree of ac-
curacy, even if it is based on a simple incremental control
paradigm, whose setting of the parameters does not require

critical insight. It consists of exploiting a classification prob-
lem to infer the next step in time of the control variable, on
the basis of the measurable quantities of the system. The term
incremental stems from the fact that at every step a small
perturbation of the current control signal is generated.

II. THE PROBLEM

The problem of service rate dimensioning of a finite traffic
buffer is considered. The stochastic input rate process of the
buffer is α(t); no specific assumptions are made for it. The
service rate of the buffer is denoted by θ(t). The overall
optimization objective is to find θ∗(t) so that the following
functional cost is minimized:∫ T

0

∆(l(t), l∗(t)) dt (1)

where l(t) is the chosen performance index measured at time
t, l(t) = l(α(t), θ(t)), l∗(t) is the performance target and ∆(·)
is a function measuring the distance of l(t) from l∗(t), e.g.,
∆(l(t), l∗(t)) = (l(t)− l∗(t))2.

Since α(t) is not known a-priori, a sequence of reallocation
steps θ(k), k = 1, 2, ... is defined, on the basis of feedback
acquired during the system evolution. The feedback law f(·)
decides the reallocation at time k, θ(k) = f(θ(k − 1), I(k)),
as a function of an information vector I(k) collecting observa-
tions of some features of interest acquired during the system
evolution up to instant k.

The components of I(k) must concern quantities correlated
with the performance, such as indications about the statistical
properties of α(t) (e.g., number of active sources, burstiness)
or, more simply (and often less effectively), its mean and
variance. For instance, I(k) may assume the following form:

I(k) = [ l(k), N(k), Bp(k), τ(k),

φ(k),m(k), σ(k), B(k), BMax(k) ]
(2)

where l(k) is the measured performance (averaged over the
[k − 1, k] horizon), N is the number of active traffic sources
giving origin to α, Bp, τ and φ are the peak bandwidth,
the average burst size and the average silence duration of the
sources, respectively, m and σ are the average and standard
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deviation of α, B and BMax are the current and maximum
buffer size, respectively. The presence of τ and φ constitutes
a certainty equivalent assumption concerning the presence of
on-off traffic sources.

In addition, any other parameter involved in the stochastic
behavior of the sources can be taken into account (e.g., some
video sources are modeled by multiple active states with
constant bit rate generation). However, some of the features
involved in a precise description of the sources may be or
may be not exploited in the information vector and this has
an impact on the control performance, as evidenced later.

The problem is thus to find the optimal sequence θ∗(k) of
bandwidth reallocations over consecutive discrete time instants
k = 1, 2, .... In a generic setting when many performance met-
rics may be of interest (loss, delay, jitter of the packets) and no
specific statistical properties of α(t) is assumed, the functional
cost can be only estimated by means of measurements on the
system. This holds true even more for the end-to-end QoS on
a network [7].

III. CLASSIFICATION AND CONTROL

A feedback law of the form:

θ(k) = f(θ(k − 1), I(k)), k = 1, 2, ...; (3)

f(θ(k − 1), I(k)) = (1 + δ · r(I(k))) · θ(k − 1) (4)

is considered, being δ a pre-defined quantity allowing changes
in θ between consecutive reallocation instants (e.g., of 5%),
I(k) the above defined information vector, and r(I(k)) a func-
tion called δ-mapping assuming values in the set {−1, 0,+1}.
This function chooses at each time instant k the best action
to be performed: in particular, if r(I(k)) = −1 the value of
θ(k) will be decreased of δ ·θ(k−1) with respect to θ(k−1);
if r(I(k)) = +1, θ will be increased of the same quantity,
whereas it will remain unchanged when r(I(k)) = 0. The
approach described by (4) will be called incremental control
(IC).

The δ-mapping can be derived through the solution of a
standard classification problem. A training set {(If , of ), f =
1, ..., F} is collected by analyzing the behavior of the system
in presence of several realizations If of the information vector;
in every sample of is the choice for r(If ) which leads
to the best change in the considered performance. Then, a
classification algorithm is used to induce from the training
set the value of the δ-mapping in the whole input domain.
The proposed approach reveals to be enough robust even if
no certainty equivalent assumption are made on the traffic
sources, namely, if only basic stochastic indicators, such as
mean and variance of α, are used.

IV. REMARKS

A. Training set

The choice of the value for of is derived by measurement-
based inspection on the system, e.g., through simulation
analysis or derived from a data set of measures available
from previous working periods of the system. In the former

case, a random generation of samples of the features in the
information vector, under a uniform distribution, may help the
generalization capabilities of the classifier; on the other hand,
the generation of the training set under a known control heuris-
tic reduces the size of the training set and the computational
complexity involved by the inherent classification problem.

B. δ parameter

The δ parameter is set to a small value in order to avoid
excessive control oscillations. One may therefore argue that
it cannot lead to fast reactions to system changes. In this
perspective, it is worth noting that reallocations in (3) can be
applied more than once, e.g, m times, between two subsequent
updates of the information vector I(k). It is sufficient to
substitute (3) with the following equation:

θ(k) = fm(θ(k − 1), I(k)), k = 1, 2, ...; (5)

being fm, with m ≥ 1, the composition of m functions f(·, ·)
having the same information vector I(k), i.e.

f1(θ(k − 1), I(k)) = f(θ(k − 1), I(k))

f2(θ(k − 1), I(k)) = f(f(θ(k − 1), I(k)), I(k))

f3(θ(k − 1), I(k)) = f(f2(θ(k − 1), I(k)), I(k))

. . .

If reliable simulative or analytical models of the system
exist, the application of (5) may occur by following the
receding horizon approach, i.e., by evaluating the effect
fm(θ(k − 1), I(k)) of m consecutive reallocations of θ before
applying them on the real system through equation (5).

C. Other approaches

Measurement-based EqB can be addressed in different
ways. On the one hand, traditional EqB closed-form expres-
sions can be applied under statistically homogeneous traffic
trunks and some QoS constraints (e.g., loss) [5]. On the other
hand, other metrics (e.g., delay) and heterogeneous conditions
may require the adoption of numerical approximations. Among
them, approaches driven by Perturbation Analysis (PA) may
be of great interest. In on-line gradient descents driven by PA
[4], an accurate tuning of the gradient stepsize is needed as a
trade off between fast reactions to traffic changes and conver-
gence [8]. The extended-Ritz method [9] may overcome this
drawback, by mapping the solutions found by PA on a neural
network, which then applies the suboptimal control on line,
almost instantly. However, the approach requires an off-line
training phase, which consists of solving a regression problem,
whose functional cost may suffer from the presence of local
minima [10]. This drawback has been recently experienced on
Gaussian sensor networks [11], for which non-linear coding-
decoding strategies are known to be optimal, but are difficult
to be found via numerical approximations [12].

The same concept may hold for Reinforcement Learning
(RL), which consists in approximating dynamic programming
cost-to-go functions through a regression algorithm. Many
regression algorithms have been investigated to this aim and
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RL has been extensively adopted in several communication
fields. However, the inherent regression problem may suffer
of numerical instability as for the extended-Ritz case.

D. Advantages

In this perspective, the main advantage of the IC approach
relies on the adoption of a classification problem for deter-
mining the correct action to be performed at any instant. In
fact, the amount of information needed to solve a classification
problem is considerably lower than that required in a regres-
sion problem [13]. For this reason, to avoid overfitting many
approximating structure of RL are chosen as linear functions,
even if non-linear ones should be, in theory, more appropriate
[14]. Furthermore, categorical variables (for which an ordering
relationship among its values is not defined) can be included
in a classification analysis, whereas this is not possible when
regression estimate is searched for. It is also remarkable that
the decision about which of the 3-classes ({−1, 0,+1}) is the
best choice at a given instant is generally less sensitive to
noise with respect to the determination of a precise value for
the control function θ.

Another advantage of IC derives from feature selection
capabilities provided by some classification techniques, which
can automatically offer insight into the structure of the prob-
lem at hand (which parameters are of main interest for
inferring control and in what conditions). In particular, rule
generation (RG) techniques that develop classifiers described
by a set of intelligible rules allow to understand the conditions
involved in a specific decision about the control action to
be performed. Recent encouraging results have been obtained
in several applicative fields by employing Switching Neural
Networks (SNN) [15] trained via Shadow Clustering algorithm
[16]. Intensive simulations have shown that intelligible models
produced by SNN present a better generalization ability with
respect to those provided by other RG approaches, such as
decision trees (DT) [17].

E. Drawbacks

The main source of error for the IC comes from possible
noise of the training set, when deriving from performance data
collected on a history database of the system. In that case,
however, the classification algorithm returns clear indications
about inadequacy of the available information (poor classifi-
cation performance or very complex ruleset).

V. PERFORMANCE EVALUATION AND DISCUSSION

A. System setting

On-off traffic is considered with respect to the packet
loss probability (PLP) metric. The PLP target is 10−2. Each
source is an on-off process with time durations exponentially
distributed on (τ ) and off (φ). For example, according to ITU-
T P.59, VoIP on-off periods amount to 1.008 s and 1.587 s,
respectively, whereas VoIP peak bandwidth of a single source
is in [5.25, 64] kbps, depending on the codec. Consequently,
τ has been set to 1.0s whereas φ has been considered as a
variable. Traffic enters an IP buffer whose length and service

rate (set by the traffic peak bandwidth) guarantees no packet
loss rate. The resulting stream is then encapsulated over DVB,
thus generating the process α(t), which then enters a DVB
buffer, whose size is variable (the size is in DVB cells, of
188 bytes each). All the other parameters of the system are
variable as well: peak bandwidth Bp ∈ [5, 50] kbps, number
of connections N ∈ [70, 120], buffer size BMax ∈ [5, 500]
and average silence periods φ ∈ [0, 5].

B. Perturbation Analysis used for comparison

The following technique, called Reference Chaser Band-
width Controller (RCBC) [1], is used for performance com-
parison with IC:

θ(k) = θ(k − 1) + ηk ·
∂∆(θ)

∂θ

∣∣∣∣
θ(k−1)

It consists of a gradient descent approach, whose gradient is
approximated through PA and whose stepsize ηk is empir-
ically tuned in order to optimize performance. The choice
of RCBC stems from the fact that it is more efficient than
other algorithms, such as PID or regular EqB [4], [8], [18].
The setting of ηk here follows [8]. The notation RCBCfs
refers to the adoption of RCBC with a fixed stepsize set to
s (ηk = s,∀k); RCBCν defines the adoption of the Vogl
method (whose tunable parameter is ν) to let the stepsize
be adaptive to the current value of the functional cost [19]:
ηk = ν · |l(k) − l∗(k)|. According to [18], the bandwidth in
correspondence of three consecutive times with PLP zero is
decreased of 15%; this leads to counteract the error introduced
by PA when it approximates with zero the gradient of the cost
function when the loss is zero, thus avoiding long situations
with overprovisioned bandwidth.

C. Simulation

The mentioned system is simulated using an ad-hoc C++
simulator implementing RCBC and IC to set the service rate
of the DVB buffer and measuring the achieved PLP over
time. Simulation time is 5 hours. Every 15m, a new system
setting is chosen by following a uniform distribution according
to the mentioned ranges (the same realization for each vari-
able is applied under each different usage of RCBC or IC).
Reallocations are performed every minute, unless otherwise
stated. The VoIP loss rate in VoIP packets (of 80 bytes each)
is measured every minute. The following figures show the
behavior of considered algorithms; each point corresponds
to the achieved PLP with the inherent bandwidth allocation,
sampled every minute. For the sake of picture clarity, points
in Fig. 1 and Fig. 3 correspond to averages of 20 points of
PLP, measured every 60s. Quantitative metrics of Tab. I, such
as the average and variance of PLP and of the bandwidth
over the simulation period, may help the interpretation of the
qualitative behavior inferred from the figures. These quantities
are identified in Tab. I through the notations l, σ2

l , θ and σ2
θ .

Also the percentage of the periods where PLP is over threshold
(l∗over) and the average difference between measured PLP and
the target (|l − l∗|) are considered.
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D. RCBC

Fig. 1 and Fig. 2 show the performance and bandwidth
allocation using RCBC (the horizontal line of Fig. 1 highlights
the target). RCBC gradient descent is initialized by the VoIP
average bandwidth of 70 sources, multiplied by the percentage
overhead of DVB. As also clear from Tab. I, RCBC is not
always able to guarantee the target. The loss peaks are due to
sudden reductions of BMax or sudden increase of Bp; this,
in turn, leads to large bandwidth increments (quite evident
for RCBC0.5). More complicated settings of ν may result
in better performance, but this would reveal that RCBC is
very sensitive to the high variable conditions of the system. In
other words, finding the best mapping among ν and the actual
system setting to guarantee the given PLP target is a hard task.

E. Incremental control

The δ-mapping for the problem under investigation is de-
rived as follows. The δ quantity is set to 15% for both training
and control. The points of the training set are derived from
consecutive simulations under quasi-random extractions of the
variable system parameters, according to a Sobol sequence.
One simulation step for training (SSTf ) corresponds to a
point (If , of ) of the training set. The duration of each SST
is 4 minutes. The first minute is considered as the transient
period to achieve steady state. The second minute allows
collecting the samples of the information vector (If ), the
last 2 minutes are used to collect the PLP. The bandwidth
is initialized with: θ = N · Bp · b, being b = (τ + φ)/τ
the sources’ burstiness (giving indication about how much a
source is “bursty”, i.e., generates packets more irregularly over
time). This constitutes the first collection of the PLP (under
of = 0). Then, two replications with the same realizations of
stochastic processes are repeated while increasing (of = 1)
and decreasing (of = −1) the value of θ; of is then chosen
in correspondence of the measured PLP closest to the target
(among the three replications of SSTf ).

The training set is built in around 2 hours over an Intel
Q6600 2.4Ghz CPU; in virtue of the independence of SSTs,
this processing time can be significantly reduced using mul-
tiple CPUs. A Logic Learning Machine (LLM) implementing
the paradigm of the SNN (subsection IV.E) is then used
to solve the inherent classification problem by using the
Rulex software [20]. F=104 is chosen to guarantee 95% of
classification accuracy over a test set of 5000 points (only
half of the training set is used to train the LLM); it is worth
noting that the same accuracy is achieved for the training set
under investigation with a reduced size, roughly speaking, of
about 3000 points. The execution time needed to train LLM
is around 15 minutes. Intelligible rules generated by LLM
to drive control are presented and discussed in the following
subsection. Two different cases are considered with respect to
two possible settings of the information vector: in the first
one (denoted in the figures with the subscript “...all”), all
the quantities in (4) are used for determining the output. In
the second case (denoted in the figures with the subscript
“...reduced”), only the quantities corresponding to no certainty
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Fig. 1. RCBC loss over time.
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Fig. 2. RCBC bandwidth allocation over time.

equivalent assumptions on the sources are used; consequently,
the variables N , Bp, τ , φ are ignored when deriving the rules.

Fig. 3 and Fig. 4 show the performance and bandwidth
allocation obtained by using IC in the same simulation setting
of RCBC (the same realizations are used). In the case of the
reduced information vector, the IC is applied with a smaller
time granularity than the regular horizon used to collect
samples of the information vector and of PLP (of 1 minute),
as explained in subsection IV.C: twice times a minute and
five times a minute (denoted in the figures with “...*2...” and
“...*5...”, respectively). The achieved performance is satisfying
in all the cases as also confirmed by Tab. I, except for IC
reallocations every 1 minute with reduced I(·). Using I(·)
with all the features of (4) guarantees an average PLP below
the target with a well balanced margin; on the other hand,
the average PLP with faster IC and under the reduced I(·)
converges to the target.

F. Rule generation

Similar results can be obtained by adopting for IC other
classification techniques, such as standard neural networks
(this has been validated by other results, not shown here).
However, LLM allows inferring some insights into the struc-
ture of the problem by means of RG. After classification, the
ruleset is simplified by removing all the rules whose covering
(i.e. the fraction of samples in the training set that verify it)
is less than 15%.
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TABLE I
AVERAGE PERFORMANCE

l σ2
l l∗over [%] |l − l∗| θ [Mbps] σ2

θ

RCBCf1 2.56·10−2 5.80·10−2 56 1.86·10−2 1.92 0.96

RCBCf5 2.00·10−2 5.70·10−2 28 1.61·10−2 2.22 1.43

RCBC0.5 1.66·10−2 5.53·10−2 27 1.29·10−2 4.10 6.83

ICall 5.60·10−3 3.85·10−2 3 5.28·10−3 3.63 1.06

ICreduced 1.76·10−2 6.92·10−2 14 1.50·10−2 2.13 1.11

IC*2reduced 1.10·10−2 5.32·10−2 12 8.84·10−3 2.36 1.52

IC*5reduced 1.00·10−2 4.13·10−2 19 6.89·10−3 3.40 3.88
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Fig. 3. Incremental Control (IC) loss over time.
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Fig. 4. Incremental Control (IC) bandwidth allocation over time.

When LLM employs the whole set of input variables to
build the model, the following rules are generated (Bp is
expressed in kbps, m and θ in Mbps):

if ((l > 2 · 10−2) ∧ (φ ≤ 4.44)) r = 1;

if ((m > 0.57) ∧ (l > 2 · 10−2) ∧ (B ≤ 138)) r = 1;

if ((m > 0.57) ∧ (l > 2 · 10−2) ∧ (BMax > 251) ∧ (Bp ≤ 44.4)) r = 1;

if ((N > 84) ∧ (σ ≤ 0.13) ∧ (l > 2 · 10−2)) r = 1;

if ((N ≤ 90) ∧ (l > 2 · 10−2) ∧ (B > 77)) r = 1;

if ((σ ≤ 0.06) ∧ (l > 2 · 10−2)) r = 1;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if ((l ≤ 5 · 10−4) ∧ (θ > 2.7) ∧ (B ≤ 266) ∧ (φ > 3.4)) r = -1;

if ((N > 87)∧ (l ≤ 10−3)∧ (θ > 1.7)∧ (BMax > 69)∧ (φ > 3.1)∧ (Bp ≤

40.1)) r = -1;

It is interesting to note that condition l > 2% to drive
bandwidth increase has been inferred by LLM without any
explicit indication about the PLP target (1%). Recognizing
the value of 4.44 as an important threshold on φ (first rule) is
another interesting outcome; the same concept holds true for
m > 0.57. The covering of the first two rules is 94% and 62%,
respectively. Rule intelligibility helps appreciate the influence
of many variables (see, in particular the first rules). The most
relevant features are (in order): l, θ, φ and Bp, whereas the
other variables have much less importance in inferring the right
control action. Surprisingly, any further knowledge on N or
σ is not so helpful as expected.

The bandwidth decrease is driven by the last rules, char-
acterized by the 15% of covering, and, surprisingly, no rule
is present to state bandwidth equilibrium (r = 0, i.e., leave
the bandwidth as it is). The rationale behind these outcomes
relies on the training configuration when θ is initialized with
the average rate of α. As a consequence of this initialization,
over 5000 points give indication about r = 1, 2000 points
are relative to r = −1 and less than 800 points correspond
to the r = 0 case. However, this does not preclude both
classification accuracy and reliable RG; as evidenced by Fig.
4, an appropriate balance between bandwidth increase and
decrease is guaranteed, even if no enough points with r = −1,
and r = 0, in particular, are available. It is also worth noting
that some r = 0 points are misclassified with the r = 1
prediction, thus giving robustness to IC (misclassification with
r = −1 would lead to wrong bandwidth decreases with a
consequent detrimental effect on the PLP). In other words,
posing the problem under the δ-mapping framework leads
to robust IC, even if the performance database available for
training is characterized by a lack of precision (missing data,
polarization on some classes).

The ruleset for the reduced information vector leads to:

if ((l > 2 · 10−2) ∧ (θ ≤ 1.63)) r = 1;

if ((σ ≤ 0.17) ∧ (l > 2 · 10−2) ∧ (BMax > 164)) r = 1;

if ((l > 2 · 10−2) ∧ (B > 83) ∧ (BMax ≤ 455)) r = 1;

if ((m ≤ 2.0) ∧ (l > 2 · 10−2) ∧ (BMax ≤ 455)) r = 1;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if ((m ≤ 2.0) ∧ (σ ≤ 0.21) ∧ (l ≤ 2 · 10−4) ∧ (θ > 2.2) ∧ (BMax >

164)) r = -1;

if ((m ≤ 1.7) ∧ (l = 0) ∧ (θ > 2.2)) r = -1;

2020 16th International Conference on the Design of Reliable Communication Networks (DRCN)

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on February 28,2021 at 17:49:29 UTC from IEEE Xplore.  Restrictions apply. 



if ((m ≤ 2.4) ∧ (l = 0) ∧ (θ > 2.75) ∧ (B > 30)) r = -1;

Four rules of bandwidth increase (r = 1) with less coverage
are not reported for the sake of synthesis. Similar comments
can be provided, with emphasis on the more intricate adoption
of m, l and BMax to guarantee the appropriate r = 1
predictions, being those the variable with the higher relevance
in the resulting feature ranking. Again, the simplicity of the
first rule, whose covering is 58%, is outstanding. The adoption
of σ in the second rule is counterintuitive, but its covering
is 57%, thus corroborating the importance of RG in support
of human intuition. Some more words are necessary for the
r = −1 predictions. The last three rules, whose covering is
20%, are intuitive (apart from the adoption of σ in one case
only), but the resulting calculation of the most appropriate
thresholds for all the variables involved is an important result.
Overall, it is interesting to notice the reliability of these rules,
despite the used features do not correspond to any certainty
equivalent assumption of the sources, and their power of
synthesis even in the presence of the large range of stochastic
behaviors considered.

VI. RELATED LITERATURE

The largest part of the applications of classification algo-
rithms to communication systems relies on behavioral classi-
fication (see [21], for a recent example). Nevertheless, driving
control on the basis of machine learning inference is intuitive
and has been applied in some cases. Reinforcement learning
has been exploited for bandwidth control in DiffServ networks
and it is still under study, see, e.g., [1]. Self-learning optimiza-
tion of the Transport Control Protocol (TCP) has been always
considered a formidable problem in virtue of the complexity
of the protocol rules, which can be hardly mapped onto a
mathematical model (see, e.g., appendix A of [6]). The authors
of [2] show how classification can drive differentiation of
TCP losses in optical burst switching either for congestion
or contention and how to slightly modify TCP’ rules on the
basis of this knowledge. Knowledge-based self-configuration
of DiffServ networks has been studied recently with: a tree-
based model checking in [22], a Bayesian network in [23],
inductive logic programming in [3]. Among them, [3] has a
direct impact on control, but its application to guarantee strict
QoS deserves further analysis.

VII. CONCLUSIONS AND FUTURE WORK

The approach proposed here concerning the joint adoption
of machine learning and control allows to both optimize
system performance and derive important insights into the
structure of the problem. The application to equivalent band-
width is just an example as many other communication settings
can be considered in virtue of the general capabilities of the
approach.
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