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Abstract Call admission control with two classes of users is investigated via a nonlin-
ear stochastic knapsack model. The feasibility region represents the subset of the call
space, where given constraints on the quality of service have to be satisfied. Admissible
strategies are searched for within the class of coordinate-convex policies. Structural
properties that the optimal policies belonging to such a class have to satisfy are derived.
They are exploited to narrow the search for the optimal solution to the nonlinear sto-
chastic knapsack problem that models call admission control. To illustrate the role
played by these properties, the numbers of coordinate-convex policies by which they
are satisfied are estimated. A graph-based algorithm to generate all such policies is
presented.
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1 Introduction

Call admission control (CAC) aims at regulating the traffic volume in networks by
determining when to accept or reject a new connection, flow, or call request. It is
typically used in voice communications, particularly in wireless mobile networks and
voice over internet protocol (VoIP). It can be exploited to guarantee specific quality of
service (QoS) requirements on the load entering the network. The load is limited by
verifying if enough resources are available to satisfy the performance requirements of
an incoming call, without penalizing the calls already processed. The performances
are measured, e.g., in terms of packet loss, delay, jitter, etc., and they are optimized
by maximizing an objective represented, e.g., by the expected revenue associated with
the accepted calls.

A useful combinatorial optimization model for CAC is represented by the knapsack
problem. In the classical deterministic knapsack, a knapsack of a certain capacity is
given, together with K classes of objects. Each object of class k has a fixed size bk and
generates a positive reward rk . The objects can be placed into the knapsack as long as
the sum of their sizes does not exceed the capacity. This represents a constraint that is
linear in the decision variables, which correspond to the numbers nk of chosen objects
of each class k (see the inequality (1) in Sect. 2). The problem consists in placing the
objects inside the knapsack so as to maximize the total reward.

In CAC for telecommunication networks, the objects are requests of connections
coming from K different classes of users. Each user k is characterized by a bandwidth
requirement bk , which plays the role of the object size, and a duration. As the requests
of connections from each of the K classes arrive randomly, and the durations of
the connections are random, too, a stochastic extension of the knapsack is required to
model CAC. It is called the stochastic knapsack problem in [1]. Among various possible
such extensions (see, e.g., [2,3] and [4, Chapter 14]), we adopt the one proposed in
[1], described as follows. The objects belonging to each class arrive according to
exponentially distributed inter-arrival times, with means depending on the class and
on the state of the system, represented by the number of objects of any class currently
inside the knapsack. Every object has a sojourn time independent from the sojourn
times of the other objects and described by a class-dependent distribution. An object
from class k, if put into the knapsack, generates a revenue at a positive rate rk . So, given
a set of admissible policies, the problem consists in finding a policy that maximizes
the average revenue (optimal policy), by accepting or rejecting the arriving requests of
connections as a function of the current state. The linear constraint on the bandwidth
defines a subset of the call space, where given QoS constraints are satisfied. Such a
subset is called feasibility region.

Typically, in telecommunication networks a constraint linear in the decision vari-
ables nk (see (1) in Sect. 2) arises when the bandwidth requirements bk are char-
acterized via their peak rates or effective bandwidths. Effective bandwidth [5] is a
well-known concept, which aims at quantifying the amount of resources (between the
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mean rate and the peak rate) for each connection, which, given an expected QoS, should
be reserved in a multiplexing system, where many data streams share a common out-
going link. There exist various important contexts in which the linear constraint has to
be replaced by a nonlinear one. For example, in statistical multiplexing with dynamic
service separation (see, e.g., [6,7]), only cell streams from the same service (class of
users) are allowed to be statistically multiplexed in a separate mini-buffer. The QoS
provision for each mini-buffer (i.e., the cell-loss rate) can be supported by a weighted
round robin. The scheduling weight of mini-buffer k is made directly proportional to
a nonlinear function of nk [8], which represents the minimum amount of link capacity
required in order to meet the packet-level QoS requirements, when nk connections are
being served at the k-th mini-buffer. It is well known that, to reflect the economies of
scale in statistically multiplexing cell streams, usually such a function of nk increases
monotonically with decreasing slope as nk increases (see, e.g., [8,9]). Therefore, in
general one has a nonlinearly constrained feasibility region. The corresponding model
is referred to as generalized stochastic knapsack problem1 (GSK problem) [10].

In general, finding optimal policies for both the stochastic knapsack [6, Chapter 4]
and the GSK [11,12] problems is a difficult nonlinear combinatorial optimization task.
The knowledge of structural properties of the optimal policies is useful to simplify its
solution, or, at least, to find good suboptimal policies. For instance, for two classes of
users, a feasibility region of the form (3) and an objective given by a weighted sum
of per-class average revenues, structural properties were derived in [1] for the optimal
policies belonging to the class of coordinate-convex policies (CC policies; see Sect.
2 for their definition). Such properties restrict the call state (n1, . . . , nK ) of the CAC
system to suitable subsets of the feasibility region. CC policies represent a large class
of CAC policies. They are characterized by a relatively simple structure and interesting
features, such as their associated product-form steady-state distribution [6, Chapter
4] and bounds on the per-class blocking probabilities [13]. Extensions to nonlinearly
constrained feasibility regions of some structural results proved in [1] for linearly
constrained ones were derived in [11,14]. Other structural results were obtained in
[12].

The contributions of this paper are the following. For the GSK problem modeling
CAC with two classes of users, we obtain closed-form expressions for the cardinalities
of the sets of CC policies that satisfy various necessary optimality conditions derived
in [11,12,14]. The results are useful to establish for which feasibility regions, such
necessary optimality conditions restrict significantly the cardinalities of the sets of the
associated candidate optimal CC policies with respect to the one of the set of all CC
subsets of the regions themselves.

The paper is organized as follows. In Sect. 2, we describe the GSK model that
we adopt to study CAC and investigate its properties. In Sect. 3, we summarize the
structural properties obtained in [11,12,14] for the optimal CC policies. In Sect. 4, we
investigate the numbers of CC policies satisfying some or all such properties. In Sect.
5, we provide an algorithm for the generation of such policies, together with some
extensions of the obtained results. Sect. 6 contains a conclusive discussion.

1 This is different from the generalized stochastic knapsack problem considered in [6, Chapter 3].
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2 A Generalized Stochastic Knapsack for Call Admission Control: Model
Statement and Properties

We start this section by stating the knapsack model used in the paper. In the classical
deterministic knapsack, a knapsack of capacity C > 0 is given, together with K classes
of objects. Each object of class k ∈ K := {1, . . . , K } has a fixed size bk > 0 and
generates a positive reward rk . The objects can be placed into the knapsack as long as
the sum of their sizes does not exceed C . This represents a constraint that is linear in
the decision variables nk ≥ 0 (i.e., the number of objects of class k that are currently
inside the knapsack): ∑

k∈K
nkbk ≤ C . (1)

The problem consists in placing the objects into the knapsack in such a way as to
maximize the total reward.

In general, in CAC one has a nonlinear constraint

∑

k∈K
βk(nk) ≤ C , (2)

where the function βk(nk) represents the minimum amount of link capacity needed in
order to meet the packet-level QoS requirements, when nk connections are being served
at the k-th mini-buffer. As mentioned in Sect. 1, to reflect the economies of scale in
statistically multiplexing cell streams, usually such a function increases monotonically
with decreasing slope as nk increases. The corresponding knapsack model, in which the
linear constraint (1) is replaced by (2), is referred to as generalized stochastic knapsack
problem (GSK problem) (see, e.g., [10]). In the context of admission control, the sets

�F R :=
{

(n1, . . . , nK ) ∈ N
K
0 :

∑

k∈K
nkbk ≤ C

}
(3)

(in the linear case) and

�F R :=
{

(n1, . . . , nK ) ∈ N
K
0 :

∑

k∈K
βk(nk) ≤ C

}
(4)

(in the nonlinear case) are called feasibility regions. They represent subsets of the call
space {(n1, . . . , nK ) ∈ N

K
0 } where given QoS constraints are satisfied. Of course,

the definition of feasibility region extends to sets satisfying other kinds of nonlinear
constraints on the state space. As mentioned in Sect. 1, often linearly constrained fea-
sibility regions arise as a consequence of the linearization of nonlinear QoS constraints
(such a linearization is obtained by introducing the concept of “effective bandwidth”).
Hence, considering the case of nonlinearly constrained feasibility regions appears to
be quite well motivated, as usually the original constraints are themselves nonlinear.
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The specific GSK model that we adopt for the CAC problem was first proposed in
[1] for linearly constrained feasibility regions (stochastic knapsack) and extended in
[11,12] to nonlinearly constrained ones (GSK). It is described as follows. The state of
the CAC system with K = 2 classes of users is described by a 2-dimensional vector n,
whose component nk, k = 1, 2, represents the number of connections from users of
class k that have been accepted by the system and are currently in progress. For each
class k, the inter-arrival times are exponentially distributed with mean value 1/λk(nk).
The holding times of accepted connections are independent and identically distributed
(i.i.d.) with mean value 1/μk . The CAC system accepts or rejects a request of connec-
tion according to a coordinate-convex (CC) policy. Here we recall its definition, from
[6, p. 116].

Definition 2.1 A nonempty set � ⊆ �F R ⊂ N
2
0 is called coordinate-convex (CC)

if and only if it has the following property: for each n ∈ � with nk > 0 one has
n − ek ∈ �, where ek is a 2-dimensional vector whose k-th component is 1, and
the other one is 0. The CC policy associated with a CC set � admits an arriving
request of connection if and only, if after admittance, the state process remains in
�.

As there is a one-to-one correspondence between CC sets and CC policies, from
now on we use the symbol � to denote both a CC set and the corresponding CC policy.
From a geometric viewpoint, the meaning of a CC policy is that it always keeps the
state vector inside a specific subset � of the state space and accepts an incoming
request of connection if and only if, in case the request is granted, the state vector
remains in � (this is not the case, e.g., of the so-called trunk-reservation policies
[7]). Moreover, when a resource is released, the state vector remains inside �. One
reason for which coordinate-convexity is used in CAC is the product-form steady-state
distribution associated with CC policies (see formula (7)). We refer the reader to [15]
for other variations of the concept of convexity.

Likewise in [11,12], in our analysis we consider the general case of a feasibility
region �F R characterized by a nonlinear constraint, described by a nonlinear upper
boundary (∂�F R)+ (see Fig. 1(b)). Similarly, we denote by (∂�)+ the (linear or
nonlinear) upper boundary of the CC set �. The set �F R is assumed to be CC, as it
often happens for feasibility regions defined in terms of QoS constraints (see, e.g., [16,
Proposition 6.3]). Of course, this includes the particular case (3), which corresponds
to a linear constraint.

Next proposition provides a characterization of CC sets. We let

l�2 (n1) := max{ j2 ∈ N0 such that (n1, j2) ∈ �} l�1 (n2)

:= max{ j1 ∈ N0 such that ( j1, n2) ∈ �}. (5)

The values l�1 (n2) and l�2 (n1) are the maximum numbers of type-1 and type-2
connections allowed in � when we have already n2 type-2 / n1 type-1 connections,
respectively. It follows from the definitions that the functions l�i (·) are nonincreasing.

Set n�F R
1,max := l�F R

1 (0) and n�F R
2,max := l�F R

2 (0).
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(a) (b)

∂ ΩFR

∂ ΩFR

n2

n1 n1

n2

Fig. 1 The upper boundary (∂�F R)+ of a feasibility region �F R with 2 class of users for the case of
a a linearly constrained �F R (stochastic knapsack) and b a nonlinearly constrained �F R (generalized
stochastic knapsack, GSK)

Proposition 2.1 The following two statements are equivalent.

(i) � is CC.
(ii) For k = 1, 2 and tk = 0, . . . , n�F R

k,max, consider the (one-dimensional) intersection

Itk between � and the line of equation nk = tk . Denote by k̂ the other index (i.e.,
if k = 1 then k̂ = 2, and if k = 2 then k̂ = 1). Only one of the three following
cases can happen (see Fig. 2):

(a) Itk = ∅;
(b) Itk = {0, . . . , l�F R

k̂
(tk)};

(c) there exists an integer nk̂(tk) ∈ [0, l�F R

k̂
(tk)) such that Itk = {0, . . . , nk̂(tk)}.

Proof (i ⇒ ii) Let us consider the case k = 1 (the proof for k = 2 is similar). If
the set It1 is nonempty, then let (t1, p2) be such that p2 ∈ It1 . An upper bound on
the maximum possible value of p2 is obviously l�F R

2 (t1), otherwise (t1, p2) would be
outside �F R and, since � ⊆ �F R , it would be outside �, too.

By the coordinate-convexity of �, if p2 > 0 then one has (t1, p2 − 1) ∈ �, so
p2 − 1 ∈ It1 . Thus, by backward induction on p2, only the three cases described in
item (ii) are possible.

(ii ⇒ i) Let n ∈ � be such that at least one of its coordinates is greater than 0;
suppose that such a coordinate is n1. Then n1 ∈ It2 with t2 = n2. So, either the case
(iib) or (iic) shows up. Then n1 − 1 ∈ It2 , or, equivalently, (n1 − 1, n2) ∈ �. Hence,
� is CC. 	


The objective to be maximized by the CAC system in the space SCC (�F R) of all
CC subsets of �F R (i.e., of all CC policies) is given by

J (�) :=
∑

n∈�

(n · r)P�(n), (6)
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Fig. 2 An example of the three
cases described in Proposition
2.1 (ii)

n2 I2 0 lΩFR
2 2

I5 0 n2 5

I11 /

t1 2 t1 5 t1 11
n1

0

where r is a 2-dimensional vector, whose component rk represents the instantaneous
positive revenue generated by any accepted connection of class k that is still in progress,
and P�(n) is the steady-state probability that the CAC system is in the state n. As � is
CC, it is well known (see, e.g., [1]) that P�(n) takes on the product-form expression

P�(n) =
∏2

i=1 qi (ni )∑
m∈�

∏2
i=1 qi (mi )

, (7)

where

qi (ni ) :=
∏ni −1

j=0 λi ( j)

ni !μni
i

. (8)

Due to formulas (7) and (8), the objective (6) has quite a complicated expression. In
particular, given any two CC sets �1,�2 ⊆ �F R , in general the relationship �1 ⊆ �2
does not imply J (�1) ≤ J (�2).

Next Proposition 2.2 (see also [17] for a similar approach) states that, in the case of
homogeneous Poisson arrivals with rate λk for each class k, maximizing the objective
(6) over the set of CC policies � ⊆ �F R is equivalent to minimizing the objective

J ′(�) :=
2∑

k=1

λk∑2
j=1 λ j

· βk(�) (9)

over the same set, where βk(�) is the blocking probability for the class k (i.e., the
probability that an incoming connection request from class k is refused by the CC
policy�). So, the objective J ′(�) is a weighted sum of per-class blocking probabilities.
The action of minimizing J ′(�) is called Erlang scheme (see, e.g., [18]).
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Proposition 2.2 For k = 1, 2, let the arrivals from class k be homogeneous Poisson
with rate λk . Set r1 := μ1∑2

j=1 λ j
and r2 := μ2∑2

j=1 λ j
. Then argmax�∈SCC (�F R) J (�) =

argmin�∈SCC (�F R) J ′(�).

Proof Set n̄k := average number of class k users, rk := revenue per unit time generated
by a class k object, and rk n̄k := average revenue per unit time generated by class k
users. Then

J (�) =
∑

n∈�

2∑

k=1

nkrk P�(n) =
2∑

k=1

rk

∑

n∈�

nk P�(n) =
2∑

k=1

rk n̄k . (10)

Let Lk := throughput of class k and 1
μk

:= mean service time for the objects of

the class k. By Little’s theorem [19] we get n̄k = Lk
1
μk

, and (10) gives J (�) =
∑2

k=1 rk Lk
1
μk

. So, in general, J (�) is a weighted sum (with weights rk/μk) of the
throughputs associated with the 2 classes.

As the arrivals for each class are homogeneous Poisson, it follows from [6, p. 20]
that the relationship Lk = λk(1−βk(�)) between throughput and blocking probability
holds. Hence,

2∑

k=1

rk
1

μk
Lk =

2∑

k=1

rk
1

μk
λk(1 − βk(�)) =

2∑

k=1

rkρk −
2∑

k=1

rkρkβk(�). (11)

Finally, setting r1 := μ1∑2
j=1 λ j

and r2 := μ2∑2
j=1 λ j

, we get

argmax�∈SCC (�F R) J (�) = argmax�∈SCC (�F R)

(
2∑

k=1

rkρk −
2∑

k=1

rkρkβk(�)

)

= argmin�∈SCC (�F R)

2∑

k=1

rkρkβk(�) = argmin�∈SCC (�F R) J ′(�).

	

Thanks to Proposition 2.2, from now on we can consider only the objective (6).
Next proposition investigates the robustness of an optimal CC policy with respect to

changes in the feasibility region, all other parameters (λk(·), μk , rk) being unchanged
(see Fig. 3 for an interpretation of the result).

Proposition 2.3 Let �o ⊆ �F R be optimal for �F R. Then, for every �′
F R such that

�o ⊆ �′
F R ⊆ �F R, �o is optimal for �′

F R.

Proof AsSCC (�′
F R) ⊆ SCC (�F R), we have min�∈SCC (�′

F R) J (�) ≥ min�∈SCC (�F R)

J (�). On the other hand, min�∈SCC (�F R) J (�) = J (�o) ≥ min�∈SCC (�′
F R) J (�). 	


123



J Optim Theory Appl

Ω o

n2

n1

ΩFR

ΩFR mod1

ΩFR mod2

ΩFR mod3

t1 47

Fig. 3 The original feasibility region �F R and three modified feasibility regions �F R, mod 1, �F R, mod 2,
and �F R, mod 3, obtained by removing states that do not belong to the CC set associated with an optimal
CC policy �o

3 Structural Properties of Optimal CC Policies

In this section, we recall some structural properties derived in [11,12,14] for the CC
policies that maximize the objective (6) in the presence of nonlinearly constrained
feasibility regions. In Sect. 4, we shall estimate the number of all the CC policies that
satisfy some or all such properties.

Next Definition 3.1 is from [1].

Definition 3.1 The tuple (α, β) ∈ �F R \� is a type-1 corner point for � if and only if
β ≥ 1, (α, β−1) ∈ �, and either α = 0 or (α−1, β) ∈ �; the tuple (α, β) ∈ �F R \�

is a type-2 corner point for � if and only if α ≥ 1, (α − 1, β) ∈ �, and either β = 0
or (α, β − 1) ∈ �.

In the following, sometimes we shall use the term “corner point” to refer to either
a type-1 or a type-2 corner point2. The importance of corner points emerges from
next proposition from [14], according to which, in order to identify a CC policy (in
particular, to find an optimal one), it is sufficient to consider its set of corner points.
The proposition provides also a way to build a CC policy starting from the knowledge
of merely its corner points.

Proposition 3.1 ([14]) Let I (�) denote the set of corner points {(αi , βi )} of a CC set
� ⊆ �F R , |I (�)| its cardinality, and C−

i := {n ∈ �F R : n1 ≥ αi and n2 ≥ βi }.
Then � = (�F R \ ∪|I (�)|

i=1 C−
i ).

2 The notation used here is slightly different from the one of [1], where a distinction among “type-1 corner
points,” “type-2 corner points,” and “corner points” is made.
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n2

n1

βi

βi 1

αi 1αi

αi 1 1 βi 1

Fig. 4 Characterization of an optimal CC policy with at least 2 corner points, according to Theorem 3.2

Let �o denote any optimal CC policy (or its associated CC set). Next result from
[12] provides a characterization of the upper boundary (∂�o)+ of �o and its intersec-
tion with (∂�F R)+, when �o has at least two corner points. Proposition 3.2 implies
that between any two successive corner points the intersection between (∂�o)+ and
(∂�F R)+ is nonempty (see the dotted ellipse in Fig. 4). Proposition 3.3 complements
Proposition 3.2, as it holds also for the case of a CC policy without corner points.

Proposition 3.2 ([12]) Let (αi , βi ) and (αi+1, βi+1) be two consecutive corner points
of �o. Then the intersection between the vertical line n1 = αi+1−1 and the horizontal
line n2 = βi − 1 either lies on (∂�F R)+ or is outside �F R .

Proposition 3.3 ([14]) �o has a nonempty intersection with the upper boundary
(∂�F R)+ of �F R .

Next proposition from [11] extends to nonlinearly constrained feasibility regions a
similar property derived in [1, Theorem 1] for linearly constrained ones. It states that
the corner points of �o can be located only among the points of a suitable grid (see
Fig. 5)3.

Proposition 3.4 ([11])

(i) If (α, β) is a type-2 corner point for �o, then for some j = 1, . . . , n�F R
2,max one has

α = l�F R
1 ( j) + 1 . (12)

3 Not every combination of points in the grid is a feasible choice as a corner points. Indeed, by Definition
3.1 and the coordinate-convexity of �, no two corner points can be on the same vertical or horizontal lines.
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n2

n1

nrect = 4

Fig. 5 Decomposition of the feasibility region into disjoint rectangles. The crosses represent the potential
locations of corner points of an optimal CC policy, according to Proposition 3.4. Such locations define the
grid G

(ii) If (α, β) is a type-1 corner point for �o, then for some j = 1, . . . , n�F R
1,max one has

β = l�F R
2 ( j) + 1. (13)

The meaning of Proposition 3.4 is illustrated in Fig. 5. The result implies that the
feasibility region can be decomposed as the union of a finite number nrect of disjoint
discrete rectangles with decreasing heights.

We define the grid G as the set of potential corner points whose coordinates satisfy
(12) and (13). In Sect. 4, we shall show that the above-defined number nrect plays
an important role in the determination of the cardinalities of the sets of CC policies.
For now, we note that, as shown in Fig. 5, the cardinality of the grid G is |G| =(∑nrect

i=1 i
)− 1 = nrect(nrect+1)

2 − 1 , so it depends on nrect only. We also mention that an
application of [14, Lemma VII.6] provides sufficient conditions under which certain
rows or columns of the grid G do not contain any corner point of an optimal CC
policy (such conditions are extensions to nonlinearly constrained feasibility regions
of analogous results obtained in [1]).

4 Narrowing the Search for Optimal CC Policies

The results described in Sect. 3 can be applied to narrow the search for optimal CC
policies to those that satisfy the necessary optimality conditions stated in Proposi-
tions 3.2, 3.3, and 3.4. We call candidate optimal CC policies the CC policies that
satisfy all or some of such conditions (the set of conditions actually considered in the
characterization of a candidate optimal CC policy will be specified each time).
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Table 1 Numbers of CC
policies that satisfy the
constraints coming from the
necessary optimality conditions
stated in Propositions 3.2, 3.3,
and 3.4, for the feasibility region
�F R shown in Fig. 5.

Number of CC policies

All policies >352715

Policies that satisfy Proposition 3.4 41

Policies that satisfy Propositions 3.3 and 3.4 28

Policies that satisfy Propositions 3.2, 3.3, and 3.4 15

As an example of application of the results that will be described later in this section,
Table 1 shows how the number of candidate optimal CC policies for the feasibility
region depicted in Fig. 5 decreases when each of the necessary optimality conditions
above is added. We shall see that, when nrect is “sufficiently small” our results can be
exploited to find the optimal CC policies with a low computational burden (e.g., by
exhaustive searches on various sets of candidate optimal CC policies). In general, we
shall show that the cardinalities of the sets of candidate optimal CC policies are far
smaller than both the cardinality of the set of all CC subsets of �F R and the number
2|G| of subsets of G.

In the following, we denote by S the set of all CC policies whose corner points
are on the grid G, and by |S | its cardinality. By Proposition 3.1, any CC policy is
completely identified by the set of its corner points, so 2|G| is an upper bound on
|S |. However, not all subsets of points on the grid G are admissible as sets of corner
points of a CC policy. Indeed, if one orders such corner points increasingly with
respect to their first coordinates, then for any two successive corner points (αi , βi )

and (αi+1, βi+1), with αi < αi+1, the coordinate-convexity of the policy imposes the
constraint

βi > βi+1. (14)

This, combined with Proposition 3.4, implies that any optimal CC policy has at

most nrect ≤ min
{

n�F R
1,max, n�F R

2,max

}
corner points. It also implies that, if a CC policy

has a corner point (α, β), then it cannot have other corner points inside the rectangle of
vertices (0, 0), (α, 0), (α, β), and (0, β). Concluding, if a CC policy has a corner point
that belongs to G, then some other points of G cannot be corner points for that policy.
Note also that, if the potential corner points are chosen in such a way that the previous
constraints (14) are satisfied, then the set �F R \∪|I (�)|

i=1 C−
i (see Proposition 3.1) is CC

(this can be checked, e.g., by applying the characterization of coordinate-convexity
provided by Proposition 2.1).

As shown by next Proposition 4.1, the number |S | of all CC policies whose corner
points belong to the grid G depends only on the quantity nrect. As they are CC,
such policies satisfy the constraints (14). Moreover, Proposition 4.1 shows the exact
dependence of |S | on nrect. In order to make explicit such a dependence, we denote
such a cardinality by |S (nrect)|.
Proposition 4.1 For nrect ≥ 1, one has |S (nrect)| = 1

nrect+2

(2(nrect+1)
nrect+1

) − 1 =
Cnrect+1 − 1, where, for a nonnegative integer n, Cn is the n-th Catalan number,
defined as Cn := 1

n+1

(2n
n

)
.
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Fig. 6 An auxiliary feasibility
region �̂F R with a grid Ĝ of the
same form as the one associated
with the feasibility region shown
in Fig. 5

n2

n1

nrect 4

Ω̂FR

Fig. 7 A monotonic path
associated with the CC subset
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),

(1, 2), (2, 0), (3, 0)} of the
auxiliary feasibility region �̂F R
shown in Fig. 6

n2

n1

n nrect 1 5

0 2

3 0

NW

SE

Proof We note from Fig. 5 that the number of CC policies with corner points on the
grid G of �F R is equal to the number of CC policies with corner points on the grid Ĝ
of the auxiliary feasibility region �̂F R , shown in Fig. 6, which is characterized by the
same value of nrect. Indeed, the shape of the grid G depends only on nrect. In particular,
it does not depend on the coordinates of its points (which, instead, do depend on the
feasibility region). Moreover, such a number is equal to the number of all CC subsets
of �̂F R .

Now, let us refer to Fig. 7. For n = nrect + 1, the number of CC subsets of the
auxiliary feasibility region �̂F R is equal to the number of different monotonic paths4

along the edges of a grid with n × n square cells that do not lie above the NW-
SE diagonal, excluding the monotonic path (−1, nrect) → (−1,−1) → (nrect,−1),
which does not correspond to any CC subset of �̂F R . It is well known [20] that such
a number of monotonic paths is the n-th Catalan number Cn minus 1, since the path
(−1, nrect) → (−1,−1) → (nrect,−1) has to be excluded from the enumeration. So,
we get |S(nrect)| = Cnrect+1 − 1 = 1

nrect+2

(2(nrect+1)
nrect+1

) − 1. 	

As an example, for nrect = 1, 2, 3, 4, Proposition 4.1 gives |S(nrect)| = 1, 4, 13, 41,

respectively. Interestingly, we shall see that |S(nrect)| can be computed also by Propo-
sition 5.1 (see Sect. 5).

4 Recall that a monotonic path (see also [20]) is a path that starts in the upper-left corner, finishes in the
lower-right corner, and consists entirely of edges pointing rightward or downward.

123



J Optim Theory Appl

Fig. 8 The sub-grid Ĝ′ for the
auxiliary feasibility region �̂F R
shown in Fig. 6 n2

n1

nrect 4

subgrid Ĝ

The number of candidate optimal CC policies can be further decreased by imposing
the other structural properties of the optimal CC policies, described in Sect. 3. In
particular, additional constraints on the locations of the corner points of an optimal
CC policy follow from the general structural properties stated in Propositions 3.2 and
3.3.

In the following, we denote by S ′(nrect) the set of all CC policies with corner
points on the grid G (i.e., satisfying Proposition 3.4) that satisfy also Proposition 3.3.
Next result provides the exact cardinality |S ′(nrect)| of such a set.

Proposition 4.2 For nrect = 1, one has |S ′(nrect)| = 1. For nrect ≥ 2, one has

|S ′(nrect)| = |S (nrect)| − |S (nrect − 1)|
= Cnrect+1 − Cnrect = 1

nrect + 2

(
2(nrect + 1)

nrect + 1

)
− 1

nrect + 1

(
2(nrect)

nrect

)
.

(15)

Proof For nrect = 1, the result follows directly by the fact that �F R is rectangular,
and the grid is empty. So, the set S(1) is made only of one policy, which is the
complete sharing policy (i.e., the CC policy obtained for � = �F R) that satisfies also
Proposition 3.3.

For nrect ≥ 2, the proof is obtained by an application of Proposition 4.1. Indeed, by
proceeding likewise in its proof, one can assume without any loss of generality that the
feasibility region is �̂F R shown in Fig. 6. Now, for such an auxiliary feasibility region
and nrect ≥ 2, the number of CC policies with corner points on the grid Ĝ and intersect
its upper boundary is obtained by subtracting from the total number Cnrect+1 − 1 of
CC policies, determined by Proposition 4.1, the number of CC policies with corner
points on the sub-grid Ĝ ′ shown in Fig. 8. As Ĝ ′ takes on the same form as Ĝ (with
nrect replaced by nrect − 1), such a number can be computed by Proposition 5.1, so it
is equal to Cnrect − 1. Hence, we get (15). 	


As an example, for nrect = 1, 2, 3, and 4 Proposition 4.2 gives |S ′(nrect)| = 1, 3, 9,
and 28, respectively.
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Fig. 9 The monotonic path
(2, 1, 2) associated with the CC
subset
{(0, 0), (0, 1), (0, 2), (1, 0),

(1, 1), (1, 2), (2, 0), (2, 1)} of
the auxiliary feasibility region
�̂F R shown in Fig. 6

n2

n1

nrect 4

2

2 1

1
2

2

1 nrect

nrect 1

In the following, we denote by S ′′(nrect) the set of all CC policies with corner points
on the grid G (i.e., that satisfy Proposition 3.4) that satisfy also Propositions 3.2 and
3.3. Next result provides the cardinality |S ′′(nrect)| of such a set.

Proposition 4.3 For nrect ≥ 1, one has |S ′′(nrect)| = 2nrect − 1.

Proof Proceeding likewise in the proofs of Propositions 4.1 and 4.2, we refer to the
feasibility region �̂F R shown in Fig. 6. Each CC policy with corner points on the grid
Ĝ and satisfying Propositions 3.2 and 3.3 can be represented by a suitable monotonic
path starting from the point (−1, nrect) and ending in the point (nrect,−1) (see Fig.
9). The only additional requirements on such a monotonic path are the following:

1. It is not the monotonic path (−1, nrect) → (−1,−1) → (nrect,−1), which is
associated to no CC policy;

2. Each time a number of consecutive unit steps downward is made, the same number
of consecutive unit steps is made rightward as the path changes its direction.

From Figure 9 one can see that the two constraints are equivalent to requiring that
the monotonic path intersects (∂�F R)+ and that the associated CC policy satisfies
Proposition 3.2.

Moreover, the particular form of this monotonic path implies that the path itself
can be represented merely by its ordered sequence of steps downward, e.g., (2, 1, 2)

in Fig. 9. In general, each such path can be represented by a sequence (l1, . . . , lh),
where l1, . . . , lh are h ≤ nrect +1 positive integers and

∑h
i=1 li = nrect +1 (the unique

sequence to be excluded is the one with h = 1 and l1 = nrect + 1, which corresponds
to the monotonic path (−1, nrect) → (−1,−1) → (nrect,−1)). Now, recall that, for
each positive integer n, the number P(n) of distinct ordered sequences (l1, . . . , lh) with
h ≤ n such that

∑h
i=1 li = n is equal to 2n−1. Indeed, a simple dynamic-programming

argument shows that, setting P(0) := 1, one has P(n) = ∑n
k=1 P(n − k) for n ≥ 1,

from which one concludes by induction that P(n) = 2n−1 for n ≥ 1.
Summing up, the number of CC policies with corner points on the grid Ĝ and

satisfying Propositions 3.2 and 3.3 is equal to 2nrect − 1. 	
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Fig. 10 The path associated
with the CC subset
{(0, 0), (0, 1), (0, 2), (0, 3), (1, 0),

(1, 1), (1, 2), (1, 3), (2, 0), (2, 1),

(2, 2), (3, 0), (4, 0)} of the
rectangular feasibility region
�F R = HR =
{0, 1, . . . , 5} × {0, 1, . . . , 4}
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1 lΩ
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1 0 1
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As an example, for nrect = 1, 2, 3, 4 Proposition 4.3 gives |S ′′(nrect)| = 1, 3, 7, 15,
respectively. Of course, in general |S (nrect)| ≥ |S ′(nrect)| ≥ |S ′′(nrect)|, and for
nrect = 1 one has |S (1)| = |S ′(1)| = |S ′′(1)| = 1.

It is interesting to compare the expressions of |S(nrect)|, |S ′(nrect)|, and |S ′′(nrect)|
given in Propositions 4.1, 4.2 and 4.3, respectively, with the cardinality |SCC (�F R)| of
the set SCC (�F R) of all CC subsets of �F R , without imposing the constraints coming
from Propositions 3.2, 3.3, and 3.4. Note that such a cardinality does not depend on
nrect, in the sense that different feasibility regions �F R with the same nrect may have
different values of |SCC (�F R)|. Let us start by considering the case of a particularly
simple feasibility region, i.e., a rectangular one, which we denote by HR .

Proposition 4.4 For a rectangular feasibility region HR, one has

|SCC (HR)| =
(

nHR
1,max + nHR

2,max + 2
)
!

(
nHR

1,max + 1)!(nHR
2,max + 1

)
!
− 1.

Proof For a rectangular feasibility region HR , each CC set � ⊆ HR can be represented
by a path made only of steps rightward and downward, starting rightward from the
point

(−1, l�2 (0)
)

and ending downward in the point
(
l�1 (0),−1

)
(see Fig. 10 for an

example). Such a path has a total number of l�2 (0) + 1 steps downward at locations

taken from the set
{

0, . . . , nHR
1,max

}
, where the same location can figure more than

once (for instance, the path represented in Fig. 10 has 1 step downward for n1 = 1,
2 steps for n1 = 2, and 1 step for n1 = 4). So, each CC set � ⊆ HR with a given
l�2 (0) can be associated in a one-to-one way to a combination with repetition of k

elements from
{

0, . . . , nHR
1,max

}
of cardinality n = nHR

1,max + 1, where k = l�2 (0)+ 1 ∈
{

1, . . . , nHR
2,max + 1

}
. The number of such different combinations is denoted by

〈n
k

〉
,

which is equal to
(n+k−1

k

) = (n+k−1)!
k!(n−1)! (see, e.g., [21, p. 16]). Summing over all
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possible values of l�2 (0) ∈
{

0, . . . , nHR
2,max

}
, we get |SCC (HR)| = ∑n

HR
2,max+1

k=1

〈nHR
1,max+1

k

〉
.

Then, by exploiting the equality
∑h

k=1

〈n
k

〉 = 〈n+1
h

〉 − 1 from [21, p. 16], we get

|SCC (HR)| = 〈nHR
1,max+2

n
HR
2,max+1

〉 − 1 =
(

n
HR
1,max+n

HR
2,max+2

)
!

(
n

HR
1,max+1

)
!
(

n
HR
2,max+1

)
! − 1. 	


As an example, for n1,max = 4 and n2,max = 5 Proposition 4.4 gives |SCC (HR)| =
425. It follows also from the definitions that, for a rectangular feasibility region (for
which nrect = 1), one has |SCC (HR)| ≥ |S (1)| = 1, and in general, for nHR

1,max

and nHR
2,max “not too small”, |SCC (HR)| � |S (1)| = 1. Similarly, for a rectangu-

lar feasibility region HR contained in a nonrectangular one �F R , one has obviously
|SCC (HR)| ≤ |SCC (�F R)|, and when min{nHR

1,max, nHR
2,max} is “not too small” with

respect to the value of nrect associated with �F R , Propositions 4.1 and 4.4 imply
|SCC (HR)| � |S (nrect)|. This is the way we estimated the lower bound 352715 on
the number of all CC policies in the example in Table 1, for which we applied Propo-
sition 4.4 to the rectangular subregion {0, 1, . . . , 9} × {0, 1, . . . , 10} of the feasibility
region �F R shown in Fig. 5.

We conclude this section by mentioning that a way to compute |SCC (�F R)| exactly
for the general case of a nonlinearly constrained feasibility region is provided by
Remark 5.1 in Sect. 5.

5 A Graph-Based Algorithm to Generate All Candidate Optimal CC Policies

In this section, we describe a graph-based algorithm to generate all candidate optimal
CC policies for nrect > 1 (the case nrect = 1 is trivial, as it is associated with a
rectangular feasibility region and an empty grid). Moreover, in Proposition 5.1 we
provide a variation of Proposition 4.1, which allows one to compute in a different way
the number |S| of all CC policies with all their corner points on the grid G.

We start the analysis by showing how one can associate in a one-to-one way each
CC policy having all corner points on the grid G, with a directed path in a suitable
auxiliary directed acyclic graph (DAG). Figure 11 shows that how this auxiliary graph
is constructed for the case of the feasibility region �F R in Fig. 5.

First of all, we build the auxiliary feasibility region �̂F R in Fig. 6, which is char-
acterized by the same value of nrect as �F R (in this case, nrect = 3). As such, its grid
Ĝ has the same shape as the one associated with �F R , and the CC policies with all
their corner points on the grid G of �F R are associated in a one-to-one way with the
CC policies whose corner points belong to the grid Ĝ of �̂F R .

Then, we construct an auxiliary graph, whose vertices are divided into layers. For
j = 1, . . . , nrect, the j-th layer contains all the points in the grid Ĝ, whose first

coordinate n1 is equal to n�̂F R
1,max − j + 1 (for instance, in Fig. 11 the first layer con-

tains only the vertex (3, 0)). The last layer nrect + 1 contains the auxiliary vertices
(0, 1)+,…,(0, nrect − 1)+ and a vertex labeled as “−” (to distinguish the vertices of
the last layer, we represent them by dashed circles). There are two kinds of arcs in
the auxiliary graph: solid arcs and dashed arcs. For j = 1, . . . , nrect − 1, each vertex
of coordinates (l j , m j ) in the layer j is connected by solid arcs to all the vertices
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Fig. 11 The auxiliary graph associated with the auxiliary feasibility region �̂F R shown in Fig. 6

of the successive layer, whose second coordinate is greater than m j . Moreover, it is
also connected by a dashed arc to the unique vertex of the successive layer, whose
second coordinate is equal to m j . For j = nrect, each vertex (l j , m j ) in the layer j
is connected by solid arcs to the vertices (0, 1)+,…,(0, nrect − 1)+ of the final layer,
whose second coordinate is greater than or equal to m j , and is connected by a dashed
arc to the auxiliary vertex “−.”

Now, we consider in the auxiliary graph a directed path that starts from the only
vertex in the first layer and ends into any one of the vertices in the final layer. As
we move from one layer to next one, we build the CC policy associated with the
directed path by updating the list of its corner points (initialized by an empty list at the
starting vertex). Suppose that, when moving along the directed path, we are currently
at the vertex (l j , m j ) in layer j ( j = 1, . . . , nrect). If a dashed transition is made
to a vertex in a successive layer, then no corner point is added to the list. Instead,
if j = 1, . . . , nrect − 1 and a solid transition is made to the vertex (l j+1, m j+1),
then the point (l j+1 + 1, m j+1 − 1) is added to the list of corner points. Finally,
if j = nrect and a solid transition is made to the vertex (l j+1, m j+1)

+, then the
corner point (l j+1, m j+1) is added to the list. For instance, the corner points of the
CC policy associated with the directed path (3, 0) → (2, 1) → (1, 1) → (0, 3) →
“-” in Fig. 11 are (3, 0) and (1, 2). The CC policy associated with the directed path
(3, 0) → (2, 0) → (0, 0) → (0, 1) → “-” in Fig. 11 has no corner points and is the
complete sharing policy.

It follows by the construction of the auxiliary graph (basically, from the absence
of NW-SE transitions) that, each time a corner point is added to the current list of

123



J Optim Theory Appl

corner points, the constraints (14) are satisfied for all the current corner points in the
list. Moreover, all the CC policies of �̂F R can be constructed in the way described
above, and no two different directed paths can be associated with the same CC policy.
Of course, once all the CC policies for �̂F R have been generated by an enumeration
of the corresponding directed paths, one can generate the ones with corner points on
the grid G of the original feasibility region �F R , by identifying the points of the grid
Ĝ with the corresponding ones of the grid G, which has the same shape as Ĝ.

Summing up, the number of different CC policies of �̂F R (which is equal to
|S(nrect)|) corresponds to the number of different directed paths going from the unique
vertex in the first layer into any one of the vertices in the final layer. This number can
be computed by a dynamic-programming argument, as shown in the following propo-
sition. The case nrect = 1, which is not included in Proposition 5.1, is trivial and gives
|S(1)| = 1.

Proposition 5.1 Let nrect > 1. Then |S(nrect)| = Pnrect (nrect − 1, 0), where
Pnrect (nrect − 1, 0) is computed recursively as follows:

Pnrect (0, 0) := nrect, (16)

Pnrect (0, j) := nrect + 1 − j , j = 1, . . . , nrect − 1, (17)

Pnrect (i, j) :=
nrect−i∑

k= j

Pnrect (i − 1, k) , i =1, . . . , nrect−1, j = 0, . . . , nrect−i −1.

(18)

Proof By the discussion in Sect. 5, |S(nrect)| is equal to the number of different
directed paths originating from the unique vertex in the first layer and ending into any
one of the vertices in the final layer of the auxiliary graph shown in Fig. 11. We denote
by Pnrect (i, j) the number of different directed sub-paths starting from the vertex (i, j)
in the auxiliary graph, when the vertex appears in any layer with the exception of the
last one (for the vertices in the last layer there is only one directed sub-path). Inspection
of Fig. 11 shows that formulas (16) and (17) hold for the second last layer. Moreover,
due to the structure of the auxiliary graph, the number of directed sub-paths starting
from a vertex in one of the first layers is equal to the sum of all the directed sub-paths
starting from its neighbors in the successive layer, so it is given by (18). 	


Interestingly, one has the following alternative interpretation of the quantities
Pnrect (i, j) in Proposition 5.1 and the following alternative proof.

For each point (i, j) of �̂F R with j = 0, let Pnrect (i, j) be the number of CC
sets �̂′ that satisfy the condition �̂′ ⊆ {(n1, n2) ∈ �̂F R : n1 ≤ i}. Similarly, for
each point (i, j) of �̂F R with j > 0, let Pnrect (i, j) be the number of CC sets �̂′′
such that (i, j − 1) ∈ �̂′′ and �̂′′ ⊆ {(n1, n2) ∈ �̂F R : n1 ≤ i}. Then |S(nrect)| =
Pnrect (nrect − 1, 0) and formulas (16) and (17) follow directly from the previous two
definitions of Pnrect (i, j) for i = 0.

We compute Pnrect (nrect − 1, 0) recursively, showing that (18) holds. Let (i, j) be
a point of �̂F R with i > 0, P+

nrect
(i, j) the number of CC sets �̂′′′ such that (i, j) is a
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corner point of �̂′′′, and �̂′′′ ⊆ {(n1, n2) ∈ �̂F R : n1 ≤ i}. Then, by the definitions
of Pnrect and P+

nrect
, we get P+

nrect
(i, j) = Pnrect (i − 1, j + 1) and

Pnrect (i, j) =
nrect−i−1∑

k= j

P+
nrect

(i, k) + Pnrect (i − 1, j) =
nrect−i−1∑

k= j

× Pnrect (i − 1, k + 1) + Pnrect (i − 1, j) =
nrect−i∑

k= j

Pnrect (i − 1, k) ,

which complete the proof of (18).
As an example, for nrect = 4, Proposition 5.1 provides

– Pnrect (0, 0) = 4, Pnrect (0, 1) = 4, Pnrect (0, 2) = 3, Pnrect (0, 3) = 2;
– Pnrect (1, 0) = 4 + 4 + 3 + 2 = 13, Pnrect (1, 1) = 4 + 3 + 2 = 9, Pnrect (1, 2) =

3 + 2 = 5;
– Pnrect (2, 0) = 13 + 9 + 5 = 27, Pnrect (2, 1) = 9 + 5 = 14;
– Pnrect (3, 0) = 27 + 14 = 41.

So, |S (4)| = Pnrect (3, 0) = 41 (of course, this is the same estimate provided by
Proposition 4.1).

Remark 5.1 Compared with Proposition 4.1, Proposition 5.1 provides a less compact
representation of |S (nrect)|. However, the technique of the auxiliary graph used to
prove Proposition 5.1 can be exploited to prove suitable variations of Proposition 5.1,
aimed at computing the following quantities.

1. The number |SCC (�F R)| of all CC subsets of the feasibility region �F R . This can
be obtained by constructing an auxiliary graph similar to the one in Fig. 11, and
counting the number of all directed paths from the first layer to the last one. The
auxiliary graph is constructed in such a way that the layer j has l�F R

2 ( j−n1,max−1)

vertices, for j = 1, . . . , n�F R
1,max + 1, and l�F R

2 (0) vertices, for j = n�F R
1,max + 2.

2. The number of all CC subsets of �F R with all corner points on the grid G, but
not belonging to certain rows or columns of G on which it is known a-priori that
an optimal CC policy has no corner points (e.g., by an application of [14, Lemma
VII.6]). This number can be computed by removing the corresponding rows or
columns of points in the auxiliary feasibility region �̂F R (thus, “squeezing” �̂F R),
and proceeding likewise in item 1. 	


Once all the CC policies with corner points on the grid Ĝ have been generated in
the above-described graph-based algorithm, one can remove from such a set all the
CC policies that do not satisfy Proposition 3.3. It follows from the proof of Propo-
sition 4.2 that the latter policies can be obtained by the same algorithm, applied to
a smaller feasibility region, which differs from �̂F R by the translation of (∂�̂F R)+
one step downward. Finally, among the remaining policies, those that do not sat-
isfy Proposition 3.2 can be simply obtained by looking at all the policies with at
least two corner points, and removing from the current list of candidate optimal poli-
cies all those for which the point (αi+1 − 1, βi − 1) is strictly inside �̂F R for at
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Table 2 Corner points of the CC policies generated by the algorithm described in Sect. 5, for the auxiliary
feasibility region �̂F R shown in Fig. 6.

CC policies that satisfy Proposition 3.4, but not Propositions 3.2 and 3.3

(3, 0), (2, 1), (1, 2), (0, 3)

(3, 0), (2, 1), (0, 2)

(3, 0), (1, 1), (0, 2)

(3, 0), (1, 1), (0, 3)

(3, 0), (0, 1)

(2, 0), (1, 2), (0, 3)

(2, 0), (1, 1), (0, 2)

(2, 0), (1, 1), (0, 3)

(2, 0), (0, 1)

(2, 0), (0, 2)

(1, 0), (0, 1)

(1, 0), (0, 2)

(1, 0), (0, 3)

CC policies that satisfy Propositions 3.3 and 3.4, but not Proposition 3.2

(3, 0), (2, 1), (1, 2)

(3, 0), (2, 1)

(3, 0), (2, 1), (0, 3)

(3, 0), (1, 2), (0, 3)

(3, 0), (1, 1)

(2, 1), (1, 2)

(2, 1), (1, 2), (0, 3)

(2, 1), (0, 2)

(2, 0), (1, 2)

(2, 0), (1, 1)

(1, 2), (0, 3)

(1, 1), (0, 2)

(1, 1), (0, 3)

CC policies that satisfy Propositions 3.2, 3.3, and 3.4

(3, 0), (1, 2)

(3, 0)

(3, 0), (0, 2)

(3, 0), (0, 3)

(2, 1)

(2, 1), (0, 3)

(2, 0)

(2, 0), (0, 3)

(1, 2)

(1, 1)

(1, 0)
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Table 2 continued

no corner points

(0, 1)

(0, 2)

(0, 3)

Table 3 Association between the points of the grid Ĝ of �̂F R and those of the grid G of �F R , for the
example, shown in Fig. 5.

Grid Ĝ (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (0,2) (1,2) (0,3)
G (5,0) (10,0) (12,0) (0,4) (5,4) (10,4) (0,8) (5,8) (0,11)

least one pair of consecutive corner points (αi , βi ) and (αi+1, βi+1). After these last
removals, one obtains all the CC policies with corner points on the grid Ĝ that satisfy
Propositions 3.2 and 3.3 (alternatively, one can generate such policies directly in a
recursive way, using the dynamic-programming argument of the proof of Proposition
4.3).

Table 2 shows all the CC policies generated by the algorithm described in this
section for the auxiliary feasibility region �̂F R shown in Fig. 6. For each policy, only
the list of its corner points is shown in the table. Finally, Table 3 shows the association
between the points of the grid Ĝ of �̂F R and those of the grid G of �F R , for the
example considered in Fig. 5.

6 Conclusions

For a generalized stochastic knapsack problem modeling call admission control (CAC)
with two classes of users, we have provided an exact enumeration of all the coordinate-
convex (CC) policies that satisfy certain optimality conditions. We have described a
graph-based algorithm to generate all such policies. The results can be exploited to
establish for which feasibility regions such optimality conditions restrict significantly
the cardinalities of the sets of candidate optimal CC policies, with respect to the set
of all CC subsets of �F R .

Another possibility consists in replacing the feasibility region �F R with feasibility
regions �′

F R ⊂ �F R and �′′
F R ⊃ �F R with “simpler” boundaries (in the sense that the

associated values of nrect are “significantly smaller” than the one associated with �F R).
Then, one evaluates the performances of all the CC policies generated by our graph-
based algorithm applied to �′

F R and �′′
F R instead of �F R . In this way one obtains,

respectively, a lower bound and an upper bound on the performance of an optimal CC
policy for the original problem associated with �F R . Moreover, greedy algorithms,
like the one developed in [12], can be used to find sufficiently good suboptimal CAC
policies which satisfy the previously mentioned necessary optimality conditions.

We conclude by mentioning that most structural results stated in Sect. 3 can be
extended to more than two classes of users, which were considered in [14]. However,
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it seems unlikely that in such a situation one can determine the cardinalities of various
sets of candidate optimal policies by means of simple expressions like those obtained
in Sect. 4 for two classes (an exception is when it is known a-priori that the optimal CC
policies take on particularly simple forms (see, e.g., [14, Theorem IV.8 and Proposition
VI.3])).
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