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A Measurement-Based Adaptive Control Mechanism for
Pricing in Telecommunication Networks
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Abstract: The problem of pricing for a telecommunication network
is investigated with respect to the users’ sensitivity to the pricing
structure. A functional optimization problem is formulated, in or-
der to compute price reallocations as functions of data collected
in real time during the network evolution. No a-priori knowl-
edge about the users’ utility functions and the traffic demands is
required, since adaptive reactions to the network conditions are
sought in real time. To this aim, a neural approximation tech-
nique is studied to exploit an optimal pricing control law, able to
counteract traffic changes with a small on-line computational ef-
fort. Owing to the generality of the mathematical framework un-
der investigation, our control methodology can be generalized for
other decision variables and cost functionals.

Index Terms: Functional Optimization, Network Pricing, Neural
Control, User Sensitivity.

I. INTRODUCTION

Network pricing is an issue widely treated in the literature.
In the last decade, quite a few models have been proposed to
address the network management through the pricing structure
[1]. In this paper we pursue the calculation of an optimal pric-
ing control law as a function of the users’ responsiveness to
the pricing structure, by exploiting data collected in real time
during the system’s evolution. We investigate a pricing model
suitable for Guaranteed Performance (GP) users (i.e., requiring
specific Quality of Service (QoS) constraints), sharing resources
with Best Effort (BE) ones. In the literature, GP and BE pricing
mechanisms are usually analyzed separately. Both of them have
their specific advantages and drawbacks. BE pricing is related
to elastic (TCP) traffic; it is based on network congestion feed-
back, and it exploits a decentralized algorithm (integrated with
flow control) to assure users’ welfare maximization, with a small
computational effort [2, 3]. On the other hand, it disregards any
revenue consideration and does not offer support to QoS-based
services. It is based on the concept of utility function to ab-
stract users’ responsiveness to prices. Since utilities are difficult
to estimate, there are no effective instruments for the Service
Providers (SPs) to control the network’s evolution. As far as GP
pricing is concerned, it considers inelastic traffic with QoS guar-
antees [4-8]; it offers an explicit support to influence network
evolution, because it is possible for SPs to decide prices and
bandwidth allocations. However, it requires a centralized man-
agement of the network with a significant computational effort.
Users’ responsiveness to prices is supposed to be known a priori,
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too. This work investigates a pricing control algorithm that tries
to cope with all the drawbacks mentioned above, and explicitly
considers multiplexing BE and GP traffic flows within a single
multiservice network. The remainder of the paper is organized
as follows. In the next section we shall start with an insight into
the BE and GP pricing models in order to motivate our approach.
In section III we define both the network model and the revenue
maximization problem under different stochastic environments
and we highlight the need of investigating an adaptive pricing
control mechanism. In section IV we formulate our functional
optimization approach and, in section V, we investigate a neural
approximating technique to solve our problem. In section VI we
validate our methodology through simulation analysis. In sec-
tion VII we conclude, by summarizing the obtained results and
emphasizing the directions for future research.

II. STATE OF THE ART AND OPEN ISSUES

A. BE and Utility-based pricing

Several works exploit the representation of users’ satisfaction
through utility functions. The concept of utility function was in-
troduced in the telecommunication literature to depict the QoS
as appreciated by the users, mainly by associating a higher de-
gree of QoS, and hence of user satisfaction of a service, to the
amount of bandwidth available for that service. Thus, it is pos-
sible to define the utility of a user r as a function of the user’s
bandwidth assignment xr, namely Ur(xr). Such function de-
scribes how sensitive user r is to changes in xr. In the context
of pricing, it is useful to think of it in terms of the amount of
money user r is willing to pay for a certain xr. Let a telecom-
munication network be composed by a set J of unidirectional
links and a set R of users (source-destination (SD) pairs). Link
j has capacity cj , J(r) is the subset of J containing the links
traversed by user r, R(j) is the subset of users traversing link j.
Let A = {Ajr, j ∈ J, r ∈ R} be the matrix assigning resources
to users (Ajr=1 if link j is traversed by user r’s traffic, Ajr=0,
otherwise). In such a context, firstly formulated in [2], each user
accessing the network maximizes his/her net utility with respect
to the assigned price pr, i.e., the bandwidth demand xr is ruled
by (1) below ( mr and Mr denote the lower and upper limits of
the bandwidth domain, respectively):

xor = arg max
xr∈[mr,Mr ]

[Ur(xr)− xrp
r] (1)

with
pr =

∑
j∈J(r)

{pj} (2)

If we interpret pj as the price per unit bandwidth at link j, then
pr is the total price per unit bandwidth for all links in the path
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of user r. Hence, xrpr represents the shadow price for user r,
namely, the bandwidth cost when transmitting at rate xr, under
the current network conditions (in terms of the congestion of the
links and of the other users’ utility functions). We now briefly
recall the results of [2, 3], which show that the very same choice
of xr maximizes the so-called network social welfare when all
users react to prices as outlined in (1), i.e.,

xo = arg max
xr∈[mr,Mr],r∈R,A·x≤c,x≥0

∑
r

Ur(xr) (3)

where A, x, c are the aggregate vectors of the assigned re-
sources, users’ rates and link capacities, respectively. Moreover,
a decentralized congestion-dependent implementation of such
pricing scheme is available. In brief, the key idea is to exploit
the Lagrangian decomposition of (3), thus giving rise to a flow
control mechanism of the form [3]:

xr(p
r(t)) = [U

′−1
r (pr(t))]Mr

mr
(4)

pj(t+ 1) = pj(t)− η ·

cj − ∑
r∈R(j)

{xr(pr(t))}

 (5)

where xr(pr(t)) is the solution of (1); [z]ba=min{max{z, a}, b},
U

′−1
r denotes the inverse of the utility function’s derivative, and

η is the gradient step-size. At each iteration, user r individu-
ally solves (1) through (4) and sets the rate on the respective
SD path J(r) to xr(pr(t)). Then, each link j ∈ J(r) updates
its price pj according to (5), it communicates the new prices to
users r ∈ R(j), whose transmission rate must be changed ac-
cording to (4), and the cycle repeats. Such pricing mechanism
is integrated within the flow control and achieves an ideal situ-
ation in which all users act individually, by pursuing their own
benefits, but, at the same time, by guaranteeing the maximiza-
tion of the network welfare (3). This mechanism is appropriate
for contracts with flexible guarantees, related to "elastic" appli-
cations. The most important drawbacks of such pricing model
are the following: (i) the revenue metric is not considered; (ii)
prices are defined with respect to the current level of conges-
tion (see equation (5)), disregarding any QoS constraint; (iii)
the SP’s perception of utility functions is very limited. Even if
some works investigate the user responsiveness to the perceived
QoS and the tariff structure (see e.g., [9, 10, 11]), the notion of
utility is actually difficult to measure or estimate. Utility-based
pricing is studied as if utility functions could be a priori known
for the SP, which optimally tunes the Call Admission Control
(CAC) as if each user device could declare its utility function
in advance [12, 13]. In practice, when the flow control mecha-
nism (4)-(5) takes place, the SP does not know the users’ utility
functions and does not have any direct control on the prices of
the BE users. Then, the only way for the SP to control the BE
prices is to influence the state of the network congestion. Apply-
ing specific routing strategies, it can introduce fictitious points
of congestion in order to increase the values of the prices in (5),
but it cannot control explicitly the equilibrium point of the BE
portion of the network. In practice, another approach for the op-
timization of network pricing is possible and it is related to the
GP traffic type.

B. GP pricing and traffic demands’ sensitivity

Real time traffic complicates the situation even more, since
it requires QoS guarantees, and gives rise to a pricing structure
involving the corresponding effective bandwidth of the services
[1] and non-concave utility functions (which do not guarantee
the existence of a unique optimum of (3)). In this perspective, it
is difficult to think of prices tracking the statistical fluctuation of
congestion, as in (4)-(5), whereas it is more realistic to deploy
fixed prices (known in advance by the users) or time-dependent
ones, according to slowly varying parameters that capture the
prevailing operating conditions of the system [4, 14]. The user’s
responsiveness to the tariff structure is thus related to the inter-
arrival of the connection requests, disregarding any utility-based
consideration. For each class of service, in which QoS require-
ments are guaranteed on an equivalent bandwidth fashion, [4, 8,
14, 15] define frequency functions of the service requests λ(·)
with respect to the assigned prices, namely: λ(·) = λ(p). In
[5], a somehow similar approach is proposed, where λ(p) is the
packet arrival rate of BE traffic as a function of the price p. In
the presence of multiple (K) service classes, let λ(p) be the ag-
gregate vector of the traffic laws λκ(pk); κ =1,...,K. Also in
this case, the maximization of the network performance still re-
mains an open issue, since different choices on the prices give
rise to different evolutions of the system. It is possible to ex-
ploit proper mathematical instruments for the planning of the
telecommunication network, but some severe drawbacks still re-
main unsolved. (i) The first one is related to the computational
burden involved in such mathematical tools (Dynamic Program-
ming in [4-7, 14, 15], Mixed Integer Mathematical Program-
ming in [8]), which limits their application if real time reactions
are needed. The adoption of some self-adjustment mechanism
to support on-line prices’ reallocation in the presence of vari-
able system conditions [16] is needed. (ii) The second (and
most important) one regards the assumption made on the per-
fect knowledge of the traffic laws λ(p). Some knowledge on
the user’s responsiveness to the pricing structure is supposed to
be always in effect in [4, 5, 8, 14, 15]. If a perfect knowledge of
users’ utility functions is difficult to assure in a real context, the
same holds true for the estimate of the functions λ(p) [4, 14].
(iii) Moreover, as underlined in [4, 8], it is worth noting that the
optimal price allocation po can be only obtained through a cen-
tralized management of the network and, finally, (iv) the effect
of time-varying bandwidth allocations (typical of BE services)
is not taken into account if only the traffic laws λ(p) of the GP
users are considered.

C. The present approach

In virtue of the points outlined above for both BE and GP
pricing, optimizing the pricing structure, jointly with on-line es-
timations of actual traffic demands, still deserves attention [17].
The idea of the present work is thus to formulate a novel pric-
ing control algorithm, such that: (i) it infers the optimal prices
as functions of measures obtained in real time, without any on-
line knowledge of the functions λ(p) and U(·) (U(·) being the
aggregate vector of the utility functions); (ii) it reacts on line
to non-stationary λ(t,p) and (U(t, ·); (iii) it manages both GP
and BE traffic, multiplexed together and sharing the available re-
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sources; (iv) it avoids any on-line computational burden; and (v)
it is suitable for a decentralized control of the network. Together
with the GP traffic laws λ(p) (as in [4, 8, 14, 15]), we exploit
utility functions U(·). We suppose that a BE user r reacts to
variations in the rate allocation by updating the congestion con-
trol scheme as outlined in (4), and that a GP user s refuses to
subscribe a GP traffic contract, if the imposed price ps does not
satisfy the willingness to pay νs = U

′

s(ys) for the required rate
ys (obtained through (1) by replacing xr with ys and pr with
νs). If ps ≥ νs, the GP user s, with required rate ys, refuses to
enter the network. We investigate a novel optimization model
for the pricing structure. The functional optimization approach
underlying the pricing allocation is exploited, with respect to the
state of the system. We take the SP’s revenue as the final goal to
pursue.

III. THE NETWORK MODEL AND THE REVENUE
OPTIMIZATION PROBLEM

We start by considering the GP traffic only. With a notation
that slightly differs from [8], let us consider H traffic routes
within a telecommunication network. A route h ∈ {1, ..., H}
is defined as a network path assigned to a group of GP users,
according to the required source-destination nodes and with re-
spect to the chosen routing plan. For each route, K differ-
ent QoS treatments are available. A service class is identi-
fied in terms of assigned route, QoS treatment and assigned
price phκ . In the MPLS terminology, a service class is equiv-
alent to the concept of Forwarding Equivalent Class (FEC),
established on a specific Virtual Path (VP). The correspond-
ing equivalent bandwidth requests are denoted with yhκ and
the corresponding traffic laws with λhκ(phκ). For instance, p
may be in terms of [$ per Mbps per minute] and y in [Mbps].
Following [8], a service separation among the service classes
([18]) is implemented in each network node. This means that
a buffer is provided for each class and a scheduler is supposed
to guarantee a proper bandwidth allocation among the classes.
By exploiting the traffic laws λ(p), different network behav-
iors are possible in terms of shared resources and correspond-
ing network performance (blocking probability, revenue, wel-
fare, and so on). Such performance metrics are manageable
by the SP, by implementing a proper tariff structure p(t) =
col {phκ(t);h = 1, ..., H;κ = 1, ...,K}, t ∈ [0,+∞]. Disre-
garding, for the time being, any utility-based consideration, the
first pricing problem is formulated as follows. Pricing Alloca-
tion Problem (PAP) I: find the optimal tariff assignment po(t),
t ∈ [0,+∞], in such a way that the long-term average SP’s rev-
enue defined in (6) below is maximized:

po(t) = argmax
p(t)

EωL[p,ω];

L[p,ω] = lim
T→∞

1

T

∫ T

0

H∑
h=1

K∑
κ=1

nhκ · phκ(τ) · yhκ(τ) dτ (6)

where nhκ(t) is the number of active users of service
class hκ at time t, and ω represent a sample path
of all stochastic variables involved in the generation of

{nhκ(t);h = 1, ..., H;κ = 1, ...,K}, t ∈ [0,+∞]. The tariff
assignment influences the stochastic variables nhκ(t) through
the (known) traffic laws λ(p), i.e., by influencing the arrival
rate of users’ connection requests (according to their specific
statistics, generally Poissonian). This is one of the stochas-
tic elements determining the sample path ω; the others are the
statistics of connection durations and the distribution of con-
nections among traffic classes (with corresponding bandwidth
requirements). Thus, each nhκ(t) depends on the chosen tariff
structure p(τ) (and corresponding arrival rates λ(τ), τ ∈ [0, t])
and on how the service classes have shared the available band-
width under the assigned routing paths in the time interval [0, t].
For each new GP request, a CAC agent is supposed to guar-
antee the network constraints due to the limited bandwidth of
the links, thus rejecting the incoming call in case of insufficient
resources. We include in all the stochastic variables involved
in the system, i.e., the aggregate vectors of the arrival process
of connection requests (a), of the call durations (d) and of the
bandwidth requirements (y), which can follow complex interac-
tions among the traffic sources through statistical multiplexing,
i.e., ω = [a,d,y]. A similar formulation of PAP I is outlined
in [6]. In general, functions p(t), t ∈ [0,+∞] may represent
either "open-loop" or "closed-loop" control laws (in the latter
case, p(t) = ψ[n(t)], n(t) being the vector of the number
of active users of all service classes). Finding them may be a
formidable problem. A description of the users’ sensitivity with
respect to a utility-based approach is also possible. This leads
to traffic laws λ(p) slightly different from the ones above. If a
utility function U(y) is introduced to depict the user’s satisfac-
tion with respect to the rate assignment y, the calls coming from
each service class follow a randomly modulated process with
rate λohκP [U

′

hκ(y) ≥ phκ], where λohκ is the arrival rate when
the price is zero ([14]). The SP’s expected long-term average
revenue reported in (7) below defines the Pricing Allocation
Problem (PAP) II:

L[p,ω] = lim
T→∞

1

T

∫ T

0

H∑
h=1

K∑
κ=1

phκ(τ) · yhκ(τ) ·
∣∣ΦGP

hκ (t)
∣∣ dt

(7)
where

∣∣ΦGP
hκ (t)

∣∣ is the subset of active users of service class hκ
at time t, whose willingness to pay prevails over the assigned
tariff phκ(t), namely U

′

ς (yς(t)) ≥ phκ(t), ς ∈ ΦGP
hκ (t). |Φ|

denotes the cardinality of the set Φ. The possible sample paths
of the system depend now on the utility functions, too.

Finally, let lGP (t) =
H∑

h=1

K∑
κ=1

nhκ(t) · phκ(t) · yhκ(t) be the

overall revenue per time unit available at time t under a possible
realization of the stochastic processes with respect to the GP
users’ behavior under the traffic laws λ(p) (denoted now with
GPλ(p)). We consider now also the presence of BE traffic, by
taking PAP I stated in (6) as a reference. BE users obtain the
bandwidth left unused by the GP ones. We suppose that the BE
traffic follows a bandwidth allocationx(t), according to the flow
control mechanism (4)-(5), thus tracking the optimal solution of
(3), as outlined in Section II. The rationale of this choice is due
to the fairness in the bandwidth and price allocations attainable
among the BE users [2]. Moreover, by exploiting proper utility
functions, it is possible to mimic the TCP behavior (see, e.g.,
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[19] and references therein). The chosen control variables are
again the prices p imposed to the GP users, disregarding any
direct action over the BE traffic (though other pricing schemes
are possible for the BE traffic and might be taken into account).
The overall SP’s revenue is thus obtained as:

L[p,ω] = lim
T→∞

1

T

∫ T

0

[lGP (t) + lBE(t)] dt (8)

and defines the Pricing Allocation Problem (PAP) III. We de-
note here by the revenue per time unit generated by the BE por-

tion of the network at time t, i.e.: lBE(t) =
|ΦBE(t)|∑

r=1
pr(t) ·

xr(t) (
∣∣ΦBE(t)

∣∣ is the set of active BE users in the sys-
tem at time t). The stochastic environment is now ω =
[GPa,GP d,y,BE a,BE d,x]. When GP and BE users are mul-
tiplexed together, the maximization of the network performance
is not so trivial as it might be expected and an optimal trade-
off in the bandwidth sharing exists [12, 20]. The key idea is to
find the best bandwidth sharing among the users, by exploiting
the GP traffic demands GPλ(p). In any case, the generality of
the proposed technique would allow us to investigate also the
application of other control variables.

A. Mathematical aspects

An approach in terms of Markov Decision Processes (MDP)
is used in general to formulate pricing allocation problems in
telecommunication networks [4, 8, 14, 15]. Our formulations of
PAPs I, II, and III do not follow this line in virtue of the follow-
ing reasons. MDP modeling leads to a complex notation when
dealing with pricing problems (see, e.g., the discussion of sec-
tion 2.5 of [6]). As such, it limits the modeling power of specific
applications of interest (e.g., PAPs II and III). The MDP model
is often derived and validated via simulations for the single-link
case only; the formal generalization to the multi-link case can be
straightforward, but the application of the resulting algorithms
may be not so immediate. Closed-form expressions of the ex-
act MDP solutions cannot be obtained for general traffic mod-
els (i.e., outside Markovian hypotheses) [6]. The calculation
itself of the solution is also computationally expensive, due to
the "curse of dimensionality" of Dynamic Programming under-
lying the MDP methodology. Some model reduction techniques
are used to avoid such a computational burden. At the best of
authors’ knowledge, the real time application of MDP solutions
is effectively adopted only in the presence of some "neural pro-
gramming" approximation of the original MDP equations [21].

B. Technology aspects

Optimization problems with revenue structures such as those
in PAP I and PAP II (Eqs. (6) and (7)) could be related to a
market-based environment, in which the SP manages connec-
tion requests from a pool of users and only a subset of them ac-
cept the assigned price. A proper negotiation protocol between
client and SP can be used to allow each client to choose on-
line the profitability of the service and the SP to decide whether
to provide bandwidth or whether to wait for more lucrative re-
quests (see, e.g., [22] and references therein). For instance, a
web hosting application, developed by the company "Invisible

Hand Networks" [23, 24], allows flexible reservation and dy-
namic pricing through web hosting providers. Such a mecha-
nism could be suitable for peer-to-peer markets (such as [25])
or for negotiating digital (e.g., television) services on demand.
Other important applications to real systems are the ones con-
sidered in [17]: IBM [26] or Cisco [27] "service center" envi-
ronments where signaling at application level supports service
contracts in real time with end users. In these kinds of environ-
ments, the SP is expected to tune the prices on line, according to
the market conditions. In this work, we face this situation, dis-
regarding the aspects related to the competition among different
SPs [22]. Beyond the proprietary solutions mentioned above,
the recent standardization studies regarding the IP Multimedia
Subsystem (IMS) architecture [28], made on the interoperabil-
ity of Internet technology with cellular networks with flexible
pricing structures (chapter 3.11 of [28]), motivate even more re-
search efforts in this direction.

C. Parameter adaptive and dynamic pricing strategies

Works [4, 14, 15] have shown that, in large telecommunica-
tion networks, if the statistics of the sources are quite "regular"
(i.e., stationarity of the traffic demands λ(p)), the performance
guaranteed by an optimal dynamic pricing strategy (in which
the prices are assigned as functions of the number of users cur-
rently active in the network) can be always reached by an op-
timal static pricing strategy, in which fixed prices are always
in effect, independent of the state of the system. Such optimal
static prices must be calculated by means of a proper off-line
planning of the network, simply by evaluating the steady state
of the system (see, e.g., [4, 8, 14, 15]). This static policy, based
on a perfect knowledge of the users’ sensitivity, is applied typ-
ically over some time horizons of a day and, for this reason,
such planning procedure is often called time-of-day pricing [14,
29]. As pointed out in [14], the adoption of an adaptive tariff
assignment po, as function of measures performed over the real
system and without supposing any exact form of the traffic laws
λ(p)), is quite attractive, since the evaluation of such traffic laws
is an open area of research (see, e.g., [9, 10, 11] and references
therein). Therefore, our aim is to find a way to dynamically ad-
just a time-varying, static pricing policy p(t) on the basis of the
current users’ sensitivity, without assuming any a-priori knowl-
edge of both the traffic lawsλ(p)) and the utility functionsU(·).
These functions are assumed to be time dependent, i.e.: λ(t,p),
U(t, ·), thus leading to a non-stationary stochastic environment.
In this way, the need of employing an adaptive pricing scheme
arises as a consequence. On the other hand, if also the BE traffic
is multiplexed with the GP one, a pricing strategy, with a feed-
back on the current state of the network, is necessary to optimize
the system performance [12]. The proposed approach guaran-
tees instruments for the aforementioned time-of-day pricing or
even for faster reactions in front of a non-stationary environ-
ment.

IV. A FUNCTIONAL OPTIMIZATION APPROACH

To face the above-described problems, we develop a func-
tional optimization approach, by defining pricing reallocations
as functions of an information vector, which summarizes the
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"recent history" of the network. A Decision Maker (DM) is as-
signed to each service class hκ (DMhκ) to monitor its temporal
behavior in real time and to assign the price phκ accordingly.
Following the idea of our previous work [30], where a structure
of DMs allows the decentralized forecast of BE allocations (3)
to drive CAC decisions on incoming GP calls, we make use of
a distributed team of DMs to solve PAP I-III in a decentralized
way. Letmhκ(·) be the information vector available for DMhκ

with respect to the state of the overall network. Different mea-
surable variables may be grouped in themhκ(·) vector, depend-
ing on the PAP we deal with. We denote by t̂ a reasonable upper
bound for the time delay necessary for each DM to obtain sta-
ble information updates about the mhκ(·) vectors from the oth-
ers DMs. Pricing reallocations are then performed by the DMs
for each service class hκ at consecutive time instants t = kt̂,
k = 0, 1, ..., on the basis of a "knowledge" collected as:

Ihκ(kt̂) = col{mhκ((k − Ξ)t̂), ...,mhκ((k − 1)t̂)} (9)

where Ξ denotes the depth of such finite-horizon memory. The
information vector of the DM constitutes a belief state of the
real traffic condition of the network in the presence of time vary-
ing loads and users’ responsiveness. When dealing with general
traffic statistics or complicated formulations as for PAP II and
III, the belief state cannot be derived in closed form by discrete-
time equations as in [6]. The information vector is thus heuristi-
cally composed of different measurable quantities deriving from
"experienced insight into the specific system of interest" [21].
The aim is to constitute the necessary sufficient statistic to prop-
erly infer price reallocations along time. More specifically, the
variables of interest for PAP I are the number of GP requests
received, for each service class, in the last time intervals of ob-
servation, together with the corresponding pricing assignments.
Other quantities are relevant for PAP II and PAP III. Concern-
ing PAP II, DMs’ information vectors contain (together with
the previous pricing assignments) the percentage of connections
blocked, owing to users’ refusals due to high prices. Concerning
PAP III, DMs’ information vectors are composed of quantities
as for PAP I, together with the bandwidth available for the BE
traffic and the corresponding BE revenue. The inference ca-
pability of these information vectors has been extensively vali-
dated by simulation analysis and, concerning PAP III, by results
reported in [30]. Let us consider the PAP I stated in (6). Let
J
kt̂
(p(kt̂)) = EωL

kt̂
[p(kt̂),ω] be the average-reward, infinite-

horizon cost functional after the price reallocation at time kt̂:

L
kt̂
[p(kt̂),ω] =

lim
T→∞

1

T

∫ kt̂+T

kt̂

H∑
h=1

K∑
κ=1

nhκ(τ) · phκ(kt̂) · yhκ(τ) dτ (10)

and let fhκ(Ihκ(kt̂)) be the price reallocation law of DMhκ:
phκ(kt̂) = fhκ(Ihκ(kt̂)). We denote by f(·) and I(·) all the
DMs’ reallocation laws and the related information vectors. The
revenue functional (10) becomes the basis of the following func-
tional optimization problem. Problem F-PAP (Functional -
Pricing Allocation Problem): find the optimal pricing reallo-
cation function f∗(·), such that the following functional perfor-

mance index is maximized:

J
kt̂
[f(I(kt̂))] = EωL

kt̂
[f(I(kt̂),ω)] (11)

The solution of F-PAP yields an "open-loop feedback" control
law, able to perform on-line dynamic reactions to variable sys-
tem conditions. Other F-PAPs can be obtained, in a similar way,
by substituting in (10) the other cost functions (7) and (8) related
to PAP II and PAP III. The centralized formulation of F-PAP
could appear in contrast with the decentralized structure of the
DMs. Nevertheless, it is essential to obtain prices as functions
of the overall state of the network. Actually, the price allocated
by DMhκ influences not only class hκ (and all the other ser-
vice classes having some links in common with such a class),
but also any other "remote" class, topologically far away from
class hκ. The rationale of this complex relationship relies on the
reciprocal influence of the classes sharing the bandwidth under
the assigned network topology and routing scheme. As such, it
is necessary that each DM maintain information about the over-
all state of the network. In this view, DMs periodically exchange
the information related to the service classes they are monitor-
ing, by means of dedicated signaling messages. After that, the
decentralization of the price reallocation laws is obtained as fol-
lows. Once the optimal control law f∗(·) solving (11) is ob-
tained, it is memorized by each DM, thus allowing a virtual
centralized computation of the prices. The process of replicating
f∗(·) in each DM is a natural consequence of the neural scheme
we are going to investigate in the next section. It is finally
worth noting that the infinite horizon cost functional (10) can
be only computed through a simulation-based receding-horizon
(RH) approximation; for simpler formulations than PAP I, the
RH approach is used [6]. The neural approximating scheme we
are going to investigate follows this direction, by exploiting a
finite horizon estimate of (10) for each possible stationary con-
figuration of the stochastic vector ω.

V. THE OPTIMIZATION METHODOLOGY

In order to approximate the optimal pricing control law f∗(·),
we develop a modified version of the Extended Ritz method [31].
The Extended Ritz method is a technique suitable for the ap-
proximation of the solution of functional optimization problems,
by fixing the structure of the decision functions. Such decision
functions are constrained to take on the structure of approxi-
mating networks, i.e., linear combinations of (nonlinear) basis
functions, containing free parameters to be optimized:

f(I,w) = col

{
ν∑

l=1

cilζ(I, w̃l) + ci0; i = 1, ..., H ·K

}
(12)

where ζ(·, ·) and ν represent a suitable basis function and the
number of basis functions used to build the approximator f(·, ·),
respectively. The Extended Ritz usually needs closed-form for-
mulas for the differential equations of the controlled system and
for the cost functional. In this work, we adapt it to a discrete
event simulation environment, in which system dynamic equa-
tions are not required explicitly and only estimates of the cost
functional and its gradient can be obtained. In this perspective,
the proposed technique generalizes the results of [31, 32], in
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which only stationary stochastic environments (involving opti-
mization problems in different research fields, such as packet-
based routing, freeway traffic control, systems’ dynamic param-
eters estimation, target motion analysis) are considered for per-
formance evaluation. Among the possible choices of structures
of the form (12), we choose one hidden layer feed-forward neu-
ral networks (due to their powerful approximation properties to
face the possible exponential growth in the number of free pa-
rameters, needed to obtain an increasing degree of accuracy).
Then, we have:

f(I,w) = col

{
ν∑

l=1

cilσ(w̃
T
1lI + w̃0l) + ci0; i = 1, ...,H ·K

}
(13)

w̃l = col {w̃1l, w̃0l} , l = 1, ..., ν
where σ(ϑ) is a non-linear activation function, e.g., a sigmoidal
(σ(ϑ) = 1

1+e−ϑ ) or a hyperbolic tangent (σ(ϑ) = eϑ−e−ϑ

eϑ+e−ϑ )
function. We suppose that each price phκ is constrained to a
given domain, i.e., phκ ∈

[
pmhκ ; pMhκ

]
. In order to guaran-

tee the fulfilment of such constraints, we compose the output of
the neural network with a normalization operator Θ(·). We thus
obtain prices’ reallocations p(kt̂) at any time kt̂ as:

p(kt̂) = Θ(f(I(kt̂),w))

phκ(θhκ) = pmhκ + (pMhκ − pmhκ) · θhκ;

θhκ = fhκ((I(kt̂),w)), θhκ ∈ [0.0, 1.0],∀h, κ (14)

We shall call "neural pricing allocation function" (NPAF) the
aggregation of functions (14), obtained as composition of the
neural networks (13) and the normalization operators, and de-
note it by f̂((I(·),w)). It follows that a parametrized cost func-
tion is obtained, by substituting the fixed structure of such NPAF
into cost (11), depending on the parameter vector w, thus lead-
ing to the following mathematical programming problem. Prob-
lem F-PAPw: find the optimal parameter vector w∗, such that
the cost function (15) is maximized:

EωL
kt̂

[
f̂(I(kt̂,w),ω)

]
= EωL̃

kt̂
(w,ω) (15)

In this way, the F-PAP (11) has been reduced to an uncon-
strained nonlinear programming problem. To solve such non-
linear programming problem, we should apply a gradient-based
algorithm:

wχ+1 = wχ − ξ · ∇wEωL̃
kt̂
(wχ,ω), χ = 0, 1, 2, ... (16)

where ξ is a fixed step-size. However, the explicit computation
of the expected cost and its gradient is a very hard task, even if
closed-form formulas for the cost functional L̃

kt̂
(·) were avail-

able [31]. We choose to compute a realization L̃
kt̂
(wχ,ωχ),

instead of the gradient ∇wEωL̃
kt̂
(wχ,ω), and we apply the

updating algorithm:

wχ+1 = wχ − ξχ∇wL̃
kt̂
(wχ,ωχ), χ = 0, 1, 2, ... (17)

where the index χ denotes both the steps of the iterative proce-
dure and the generation of the χ-th realization of the stochas-
tic processes involved in ω. The components of the gradient

∇wL̃
kt̂
(wχ,ωχ) can be obtained by using the classical back-

propagation equations for the training of neural networks. The
backpropagation procedure must be initialized by means of the

quantities ∂L
∂phκ

, h = 1, ...,K; κ = 1, ...,K (i.e., the gradient

∇pL(p,ω
χ)). Unfortunately, in our case, such quantities can-

not be obtained analytically as in [31], because no closed-form
of the cost functional L(·) is available [6]. Hence, during the
training phase (17), gradient estimates are computed as:

∂L
kt̂
(p(kt̂),ωχ)

∂phκ(kt̂)
∼=
L
kt̂
(phκ+(kt̂),ω

χ)− L
kt̂
(p(kt̂),ωχ)

∆p

(18)
where phκ+(kt̂) means that a "small" increase is carried out for
phκ(kt̂) (the hκ-th component of the price vector p(kt̂)), i.e.,
phκ+(kt̂) = phκ(kt̂)+∆p. Since such training procedure can be
performed off line, L

kt̂
(phκ+(kt̂),ω

χ) and L
kt̂
(p(kt̂),ωχ) are

computed by simulation inspection through a suitable discrete
event simulator that mimics the behaviour of the network.

A. Remarks on the neural pricing allocation function and its
application in real time

(i) Computational effort. The approach deriving from Eqs.
(17) and (18) recalls to some extent the gradient-based proce-
dure developed in [6] for a MDP applied to a slightly modified
version of our PAP I. The difference is that the above-described
training procedure can be performed off line. The related com-
putational burden does not influence the on-line performance
of the system. In real time, the optimized NPAF f̂(·,w∗) is
applied, obtaining new price reallocations "almost instantly".
Once a neural network is trained, the computation of its input-
output relationship requires a given number of multiplications
depending on the number of neural units. Such a number is,
in the worst case, super linear (and never exponential) in the
number of inputs [31]. Although special computation for the
(e.g., sigmoid) neural units is required, the overall computa-
tional complexity is very limited (see, e.g., [33] for details). The
solution of PAP III includes a sort of decentralized BE revenue
forecast (similar to the one of [30]) to drive incentive or dis-
couragement to GP calls. Without the neural approximation of
(15), such a forecast would require the solution of problem (3),
whose computational time is exponential in the number of users
(we verified this trend by extensive simulation campaigns [12,
30]). The advantage is significant with respect to other compu-
tationally expensive algorithms, developed for GP pricing [4, 5,
7, 8, 14, 15], too.
(ii) Non-stationarity. Our approach can accommodate non-
stationarity. For the F-PAPs investigated here, an optimal pric-
ing assignment arises for each possible combination of station-
ary traffic laws λ(p) (PAP I) and utility functions U(·) (PAP II
and PAP III), thus guaranteeing the maximization of the long-
term expected revenue performance. Variable system condi-
tions are related to non-stationary processes coming from time-
varying λ(t,p), U(t, ·). The information vector (9) "captures"
the current structure of the stochastic environment and the opti-
mized NPAF automatically tunes the prices, without any precise
insight into the structure of the current stochastic vector ω. Let
Ω be the set of the possible compositions of the stochastic en-
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vironment, i.e., Ω =
{
ω1, ...,ω|Ω|

}
. The inference capability

of the NPAF needs a training phase with respect to the stochas-
tic set Ω. This means that the SP, during the planning phase
of the network, defines the possible operating behaviours of the
users (on the basis of its experience and of measurements per-
formed on the network in the past), thus enabling the set Ω to
aggregate the possible stochastic environments, defining the fu-
ture network evolution. Then, the training phase (17) is per-
formed, to obtain the optimized NPAF. The SP also periodically
supervises the users’ behaviour in real time, in order to exploit
other possible instances of Ω, not previously used in the train-
ing phase, and restarts a new training to update the NPAF, if
necessary. This updating procedure is briefly summarized in the
Appendix. The key point is that the training applied in real time
is faster than the one performed for the first time off line, be-
cause an "already partially trained" NPAF is adopted [33].
(iii) Distributed DMs and scalability. DMs may be located
within the applications servers responsible for the on-line moni-
toring and control of the charging system (see, e.g., chapter 3.11
of [28]). A dedicated signalling is required for them to exchange
information about the service classes. The QoS-based variant of
BGP [34], defining a common language for network entities to
exchange generic policy information, is well suited for our de-
centralized paradigm. In this view, the implicated communica-
tion scheme recalls the BGP protocol establishment of interior
BGP (iBGP) sessions within an Autonomous System (AS). iBGP
peers must be fully meshed together, as in our case. For a large
AS, say in the order of several hundred iBGP sessions, it be-
comes impractical to manage such a large number of sessions.
To avoid iBGP session mesh and yet still be able to propagate
information to all BGP routers inside the AS, the route reflec-
tor (RR) concept is used. The RR is responsible for replicat-
ing messages towards its peers, thus avoiding a mesh structure
of the peers. The same idea can be applied to our DMs in or-
der to limit scalability problems. The time scale of the DMs
signalling depends on the parameter t̂, which defines the time
granularity of the updates made on the DMs’ information vec-
tors. It has an upper bound, which depends on the size of the
period of traffic stationarity Ts. To let reallocations work prop-
erly, the NPAF must include in Ts at least one reallocation step
comprising the entire depth of its information vector. Accord-
ing to (9), this implies t̂ ≤ Ts

ν·Ξ , being ν ∈ N+, ν ≥ 2 the
number of reallocation steps one wants to include within Ts.
Fig. 1 may help understand; it considers the worst case for t̂,
where the information vector acquired over a given stationary
horizon (e.g., "VoIP environment") drives the reallocation over
a new stationary horizon ("VoIP&video environment"). The pa-
rameter Ξ represents the depth (i.e., number of samples) of the
information vector, at each reallocation step, necessary to cap-
ture accurate estimation of traffic statistics. Setting large values
of Ξ means increasing both estimation accuracy and communi-
cation overhead (and viceversa). General rules are not available
in these cases, because the optimal setting depends on both the
stochastic environment and the cost functional. Heuristically
setting Ξ is the only solution. In the scenarios considered be-
low, we found Ξ=5 to produce the best compromise between
accuracy and communication overhead. Simulation results, not
reported in the paper, corroborate this value for a wide range of
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Fig. 1. Upper bound of DMs communication delay t̂: worst case.

topologies and traffic laws. The order of magnitude of Ts, on the
other hand, deserves a more insightful analysis. In case it could
be measured in minutes, the effect on t̂ would lead to an imprac-
tical signaling overhead. However, as outlined in [14], demand
patterns in the Internet suggest that user sensitivity is piecewise
stationary during the time horizon of the day (e.g., with 3 or 4
time intervals of stationarity). It is therefore reasonable to as-
sume that the time granularity of the measures collected on the
information vectors (t̂) can be easily set to much lower values
than the time scale of traffic stationarity (Ts), without incurring
in negative consequence in terms of communication overhead or
loss of important information. An example concerning the co-
existing effect of both t̂ and the number of DMs is reported in
subsection VI.B.

VI. PERFORMANCE EVALUATION AND DISCUSSION

In this section we illustrate an evaluation of our pricing con-
trol mechanism. To this aim, we have developed a simulation
tool in C++ that describes the behavior of the network at the
flow level for both GP and BE traffic. In the first part of our
performance evaluation, we are interested in analyzing the con-
vergence behavior of the training algorithm (17), by employing
the gradient estimation procedure (18) and assuming stationary
conditions. The aim is to emphasize, through simulation inspec-
tion, that the proposed neural approach yields the optimal pric-
ing assignment after the training phase. Then, we highlight how
variable system conditions (in this case: λ(t,p), U(t,y)) can
be mapped on the neural approximator, and we compare its on-
line performance with an optimization technique that exploits a
perfect knowledge of the users’ utility functions.

A. Convergence behaviour of the control algorithm

The first simulation scenario is related to PAP I. It is aimed
at introducing the parameters of the following simulation sce-
narios and at detailing both the implementation of the train-
ing phase and the procedure performed to verify the optimality
of the NPAF. In this case, a trivial optimal pricing assignment
(easily computable through simulation comparisons) has to be
reached for a small network (composed by one link and two
service classes). As outlined above, a service class is defined
as a routing path combined with a specific QoS treatment (in
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Fig. 2. Revenue during training.

terms of equivalent bandwidth assignment). The simulation sce-
nario is built as follows. Two routes, whose traffic demands are
λi(pi) = 1.0 · p−1.05

i ; pi ∈ [1; 100]; i = 1, 2, belong to a single
link of 10.0 Mbps capacity. The corresponding interarrival times
are exponentially distributed. The aforementioned traffic laws
are taken from [35] and reproduce the demand elasticity of a
voice service. Each voice source is modelled as an exponentially
modulated on-off process, with the mean on and off periods be-
ing of 1.008 s and 1.587 s duration, respectively, as per the ITU
P.59 recommendation. The source peak rate is 16.0 kbps. Band-
width requirements follow an equivalent bandwidth expression,
derived by simulations, to assure a Packet Loss of 2%. The
buffer dimension is fixed at 100 voice packets (80 bytes each) to
guarantee a maximum end-to-end delay lower than 150 ms. The
mean duration of the calls is fixed to 10.0 minutes and is log-
normally distributed. The training phase acts as follows. At the
χ-th step of the training algorithm (17), a sample path ωχ of the
stochastic variablesω is generated on a time horizon [0,Ξt̂+T ],
accordingly to the underlying probability distributions. At time
Ξt̂, once that the information vector I(Ξt̂) is collected, the neu-
ral price reallocation function is applied and the corresponding
performance is computed, together with the derivative estimates
(18) for each price component. Then, the backpropagation pro-
cedure is applied to train the NPAF and a new step of (17) is
performed, until a steady state of the revenue function (6) has
been reached. A neural network with 15 hyperbolic tangent neu-
ral units in the hidden layer and with a sigmoidal output layer
has been used. The architecture of this approximator was deter-
mined experimentally by progressively increasing its complex-
ity, until no significant increase in the expected revenue func-
tion occurred. A new interval of observation starts every hour
(t̂=1 hour) and, as a consequence, Ξt̂ is fixed to 6 hour (the first
hour of simulation during training is considered a transient pe-
riod to meet the regime of the stochastic processes). The overall
simulation time T in (6) after the price reallocation is set to 15
hours for each training step (Ξt̂+ T=15+6 hours). The gradient
stepsize ξχ of (17) is taken as ξχ= 1.0

2.0·105+χ
(thus assuring a de-

creasing behaviour as convergence requirement); we have also
added a "momentum" term ρ · (wχ − wχ−1), ρ=0.3, to (17),
as usually done in training neural networks to speed up conver-
gence. The ∆p parameter of the gradient estimation procedure
(18) was fixed to 6.0. We intentionally fixed the training param-
eters in order to obtain 100 training steps, just to highlight the
convergence behaviour. Figs. 2 and 3 show the revenue per-
formance and the prices’ assignments during the training phase.
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Fig. 4. Topology of the test network.

For the simple network scenario under investigation, the lowest
price values poi =1.0, i = 1, 2 (and the corresponding frequency
of the interarrival requests λoi = λi(p

o
i )) guarantee the best per-

formance. As we are going to illustrate, this trivial situation
does not always hold true in more general traffic conditions and
with more complicated routing assignments. For the time be-
ing, it is worth noting that the prices’ optimality (reached after
training) can be confirmed by simulation inspection. Namely,
we employed a gradient-based descent, directly over the prices’
domain, i.e., pφ+1 = pφ − ψ∇pL

kt̂
(pφ,ωφ), φ = 0, 1, 2, ...

(the gradient is again estimated as in (18)) and found that the
optimal point (achieved at the end of the gradient procedure) is
the same as the one obtained after training. We also obtained
the same optimum by using Powell’s algorithm, which is a well-
known non-linear programming technique that does not exploit
any knowledge concerning the gradient of the performance in-
dex.

B. Optimal pricing assignment in a real network scenario

The second simulation experiment regards a "VoIP" scenario
with PAP I and makes use of the COST 239 experimental net-
work topology under the voice service classes described above
and deployed along the routes depicted in Fig. 4. The capacity
of the network links is fixed to 30.0 Mbps. The employed neural
network structure is the same as the one of the previous simula-
tion scenario. This time, due to the combinatorial number of the
possible trials in the pricing assignment, it is more difficult to
find out the optimal solution through simulation inspection. The
prices’ domain, the training parameters, the simulation horizon
T in (6), and the ∆p parameter were accurately tuned in order to
speed up the convergence of the training phase: pi ∈ [1, 10];∀i,
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Pricing Assignment Revenue Blocking Probability 

pi = 100.0, i=1,...,6 4.406673e+006 0.0 

      pi = 25.0,   i=1,...,6 4.647619e+006 0.0 

      pi = 10.0,   i=1,...,6 4.863280e+006 0.0 

      pi = 5.0,   i=1,...,6 5.054878e+006 0.001132 

(19) 5.125e+006 0.009606 

      pi = 4.0,     i=1,...,6 5.087591e+006 0.006751 

      pi = 3.0,     i=1,...,6 4.982476e+006 0.031672 

      pi = 2.0,     i=1,...,6 4.426812e+006 0.136192 

      pi = 1.0,     i=1,...,6 2.889035e+006 0.402790 

Fig. 5. Pricing assignments and corresponding performance.
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Fig. 6. NPAF versus Perfect Knowledge (PK) strategy.

ξχ= 1.0
6.0·104+χ

, ρ = 0.3, T=1000 hours, ∆p=1. The training
procedure (after 10 steps, around 7 minutes on an AMD Athlon
@1.8 GHz) converges to the following pricing assignment:

po1 = 5.346664; po2 = 5.647137; po3 = 3.616069;

po4 = 3.249087; po5 = 1.789551; po6 = 2.213421; (19)

As mentioned above, we verified the optimality of (19) through
a gradient-based procedure and Powell’s algorithm, both per-
formed over the price variables. We report in Fig. 5 the most
significant samples obtained over the performance index, just
to highlight how solution (19) guarantees the best bandwidth
sharing among the users, corresponding to an overall block-
ing probability of 0.9606%, which reveals to be the optimal
one (in terms of revenue), as compared to the other block-
ing probability values (obtained in correspondence with dif-
ferent price allocations). As far as non-stationary conditions
are concerned, we considered the addition of the demand func-
tion λ(p) = 2.0·−2.50 in substitution (for the routes 3, 5, 6)
of the voice services adopted above. This situation is called
"VoIP&Video" scenario. The function λ(p) = 2.0·−2.50 is re-
lated to video services ([35]). The mean duration of the calls
is 10.0 minutes and is exponentially distributed. Taking [8] as
a reference, each video source is modelled as an exponentially
modulated on-off process, with mean rate 0.5 Mbps and peak
rate 3.0 Mbps. The average burst is 10.0 s. Video bandwidth
requirements follow an equivalent bandwidth expression (found
by simulation) to assure a Packet Loss of 10−5 (taking the ATM
cell structure as a reference). Lower loss probabilities can be
taken into account by using a closed-form formula of the equiv-
alent bandwidth. The buffer dimension for the video service
is fixed to 30 ATM cells for each network link, to guarantee a

maximum delay per node always lower than 20 ms. The op-
timized NPAF must optimally tune the prices in dependence of
the changes in the stochastic environment (in the periods of time
when the video service is multiplexed with the voice one). Us-
ing the updating algorithm summarized in the Appendix, a new
training phase is obtained (with a computational time of about
4 minutes to complete on the same desktop PC) with respect to
the new traffic demand (the video service). The updated NPAF
"learns" that the prices’ allocation in the presence of video ser-
vices is slightly different from (19), assigning po3 = 1.130131;
po5 = 1.924691; po6 = 1.411997 (thus providing incentives for
the video calls, since they reveal to be more lucrative for the
SP). Fig. 6 highlights the performance obtained by a distributed
team of DMs, equipped with the trained NPAF (as outlined in
section IV), with respect to an unfeasible "Perfect Knowledge"
(PK) strategy that exactly knows the time changes of a sequence
of consecutive 10 VoIP and VoIP&video scenarios (one scenario
is repeated after the other every Ts=5 hours). The width of the
confidence interval over the following simulated revenue perfor-
mance measures is less than 1% for 95% of the cases. The PK
strategy controls the prices accordingly to the neural solutions
above with respect to each different scenario. The rationale of
the performance decrease envisaged in Fig. 6 relies on the im-
perfect allocations made by the DMs in correspondence of the
stationarity changes; it is an increasing function of t̂ (the time
granularity of the DMs’ information vectors). Also the num-
ber of DMs has an impact on performance: when only 3 DMs
are used, the performance decrease is more limited (one DM
is assigned to each couple of routes: routes 2&6 with link 6
in common, DM in Zurich; routes 3&5 with link 12 in com-
mon, DM in Milan; routes 1&4 with link 8 in common, DM
in Prague). When 6 DMs are employed, a DM is assigned to
each different traffic route. This effect is due to the slow prop-
agation of the information acquired on the overall state of the
network as the number of DMs increases. However, a reason-
able value for the updating speed of the information vectors re-

sults to be t̂ ≤ Ts
10=30 min (it guarantees no more than 20% of

performance decrease). As such, the communication overhead
required by the team of DMs is almost irrelevant.

C. Dynamic reactions to variable utility functions

After evaluating the optimality guaranteed at the end of the
training phase, we now test the NPAF’s on-line performance, by
taking into account an instance of PAP II. We introduce vari-
able GP users’ utility functions, i.e.: U(t,y). In a network
composed by a single link of 10.0 Mbps capacity, two service
classes, whose frequency demands are both 3.0 calls per minute
(exponentially distributed), are introduced, together with utility
functions of the form:

Ui(ys) = αi ·
√
ys; i = 1, 2; ys ∈ [0.1, 1.0] (20)

The index i denotes the class of service and αi is a random
variable, associated to each incoming connection, uniformly dis-
tributed in the intervals [0.0, 60.0] or [0.0, 80.0] for each class,
in different time periods. This means that the average willing-
ness to pay of one class is periodically sensibly higher than the
one of the other class. The NPAF should be able to discover
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Fig. 8. Prices during training.

these statistical changes and optimally set the prices assigned
to each class. During the network evolution, each user s re-
quires a service rate ys (uniformly distributed in the range [0.1,
1.0] Mbps) and, on the basis of the imposed price ps, accepts
to enter the network (and pay the corresponding tariff ps · ys,
e.g., in $ per minute) on the basis of its willingness to pay νs,
i.e., if ps ≥ νs = ysU

′

s(ys). Each time a new user arrives,
its willingness to pay is randomly assigned through (20). The
mean durations of the calls are exponentially distributed, with
an average of 10.0 minutes. The prices’ domain, the employed
neural network structure and the training parameters are equal
to the ones of the first simulation scenario. The previous 5 time
intervals of observation (of one hour duration each) are taken
into account in the information vector. A preliminary training
phase is shown, consisting of 80 steps, to highlight the neural
price function reactions to variable system conditions. The first
40 steps are related to utility functions taken from (20), whose
αi parameters are uniformly distributed between [0.0, 60.0] and
[0.0, 80.0] for the first and the second class, respectively (then,
the second class guarantees a higher willingness to pay). In the
last 40 training steps the situation is reversed and the first class
shows a higher willingness to pay, on average. The revenue per-
formance and the prices during training are depicted in Figs. 7
and 8, respectively. At the end of the first 40 steps, the training
procedure has discovered the optimal prices’ assignment (i.e.,
po1 = 12.7 and po2 = 16.0) with respect to the first "average"
utility function scenario. On the other hand, when the second
utility function scenario is introduced (after the first 40 steps),
a revenue decrease arises and 20 additional training steps are
necessary to find out the new optimal prices’ assignment, cor-
responding to po1 = 16.8 and po2 = 12.9. Up to 320 indepen-
dent repetitions of such training phase are necessary to map the
variable system conditions (i.e., U(t,y)) on the NPAF. In Fig.
9 we depict the on-line performance of the trained NPAF. The
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Fig. 9. NPAF versus Perfect Knowledge (PK) strategy.

width of the confidence interval over the following simulated
revenue performance measures is less than 1% for 95% of the
cases. The test consists in alternating the aforementioned av-
erage utility function scenarios at different time intervals after
the training phase. Our approach is compared with an infea-
sible "Perfect Knowledge" (PK) strategy that exploits a perfect
knowledge of the users’ utility functions and changes the prices
accordingly to the results shown in Fig. 8. Namely, when the
first service class has more willingness to pay, the PK strategy
sets the prices as po1 = 12.7 and po2 = 16.0, and vice-versa when
the second traffic class gives rise to "higher" utility functions.
We recall that the updating parameters of the information vector
(subsection V.A.(iii)) are: t̂=1 hour, ν=2 and Ξ=2. Looking at
the "Observation time interval: 1 hour" curve in Fig. 9, it is eas-
ily observable that when the two static scenarios alternate every
5 hours, the percentage decrease in terms of revenue over the PK
strategy is below 15%. On the other hand, when they alternate
more frequently, the revenue decrease is much more evident (up
to 35% when the duration of each static scenario is one hour).
This means that when the duration of the "static" scenarios is
significantly smaller than the one of the observation horizon,
the neural network does not infer correctly the next prices’ real-
location. Such a drawback can be faced by properly tuning the
sample time intervals of the information vector. If the training
phase is repeated with observation time intervals of 25 minutes
each, the trained NPAF appreciably improves the performance
("Observation time interval: 25 minutes" curve in Fig. 9).

D. Multiplexing GP and BE traffic

We next turn our attention to the PAP III, thus analyzing GP
and BE traffic mixed together. In this test, we take the second
simulation scenario (with the voice demand function concern-
ing GP traffic) as a reference and we introduce BE flows in the
routes 1, 2 and 4 in Fig. 4. The parameters of BE traffic are
fixed as follows. The mean interarrival time of the BE connec-
tion requests is 1.0 call per minute (exponentially distributed)
and the mean distribution of a call is 10 minutes (log normally
distributed). The utility functions are:

Ur(xr) =
√
2τ−1σr arctan

(
1√
2
τxr

)
;xr ∈ [0.1, 1.0]∀r

(21)
and are taken from [19] to mimic the TCP Reno behaviour. τ
denotes the Round Trip Time of each TCP connection. For the
sake of simplicity, we suppose that the optimal equilibrium point
(found at the end of the training phase) assures an amount of
bandwidth for the BE traffic sufficient to disregard the packet-
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 Fig. 11. Improvement with BE traffic: variable BE requests.

based congestion in the link’s BE queues. Hence, τ can be fixed
only on the basis of the propagation delay of the links (supposed
to be equal to 10 ms). Then, τ= 80 ms for routes 1 and 4; τ= 60
ms for route 2. σr is a random variable (uniformly distributed in
[10, 20]), acting as a scaling factor of the willingness to pay of
the BE users. A non-linear programming solver ([36]) is inte-
grated in the simulator, to mimic the behavior of the BE portion
of the network. Each time a change in the bandwidth available
for the BE traffic is detected (i.e., when a GP call enters or exits
the network) the welfare problem (3) is solved to compute the
new equilibrium point in the BE bandwidth allocation; then, the
new BE prices are calculated through (1) with respect to such
new equilibrium. In this way, we take into account the variabil-
ity of BE prices due to the bandwidth sharing at the flow level
as in (4)-(5). The BE prices are considered always at equilib-
rium, disregarding their transient fluctuations before reaching a
new operating point. Modelling the behaviour of the BE portion
through this mechanism is suitable for the off-line training of
the NPAF. It allows accelerating the training phase, since it does
not require a packet-based granularity of the simulations. The
NPAF’s structure and the training parameters are equal to the
ones of the first simulation scenario. Fig. 10 highlights the per-
centage improvement over the optimum revenue accomplished
by (19) (in the second simulation scenario), as a function of the
percentage of bandwidth available for the BE traffic. This latter
index is defined as the value of the bandwidth available in the
bottleneck links of BE routes (links 4 and 8), averaged along the
time horizon T of a training step. The new optimal solution is:

po1 = 6.414321; po2 = 5.411827; po3 = 8.913673;

po4 = 11.560122; po5 = 12.468861; po6 = 4.385691; (22)

corresponding to 28.78% of bandwidth available for the BE traf-
fic, which corresponds to the maximum of the curve depicted in

Fig. 10. The optimal operating point achieves 22.41% of per-
centage revenue improvement when, on average, 28.78% of the
BE bottleneck links’ capacity is left to the BE traffic. On the
other hand, the optimal solution (19), which ignores the pres-
ence of BE, would leave the BE traffic only 15% of the links’
capacity. Fig. 10 was obtained throughout the training phase as
regards the x-axis range [15%, 28.78%]. The remainder of the
curve has been found out by simulation inspection, for the sake
of completeness. At the end of the training phase, the NPAF
found the new optimal solution (22), whose components 3, 4,
5 are higher than the ones obtained in (19). This means that
less GP calls are required in the routes 3, 4, 5 to maximize the
revenue performance, since the willingness to pay of BE users
reveals to be more profitable when 28.78% of the bandwidth is
available for the BE traffic. Fig. 11 shows the optimum op-
erating point of the system, as a function of the frequency of
the BE interarrival requests. The point [1.0, 28.78] corresponds
to the aforementioned solution (22). The other points are ob-
tained by repeating the training phase with different values of
λBE . It is worth noting that similar results are obtained when
another model of BE utility is used (i.e., TCP Vegas, utility of
the form Ur(xr) = αrτr log xr [19]). The optimal operating
point with the TCP Vegas utility is [27.91%, 25.13%] instead of
[22.41%, 28.78%]. This would suggest that, for the simulation
scenario investigated here, changing the TCP model does not
significantly affect the operating points achieved by the NPAF
after training. The aggregate effect of BE users has the major
impact on the revenue performance, despite the changes in the
BE utility functions. This latter result is quite surprising and
suggests further experiments through simulations at the packet
level (thus capturing the transient behaviour of the BE prices,
too). This activity is currently the subject of ongoing research.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a novel control mechanism has been studied to
allow optimal price reallocations as a function of the state of
the network. Simulation results have shown how the Service
Provider’s revenue is maximized, despite the possible changes
in the traffic demands and in the willingness to pay of the users.
Future work might include the application of further constraints,
such as respecting fixed blocking probabilities for the GP ser-
vice classes. The latter task can be accomplished by implement-
ing proper penalty cost functions during the training phase (see,
e.g., [32]). We are also working on the evaluation of the NPAF’s
performance when it is employed in a decentralized fashion (as
outlined at the end of section V). The aim is to highlight the im-
pact of decentralized control for GP pricing, which is currently
an unexplored area of research.
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APPENDIX: UPDATING THE NPAF IN REAL TIME
Without loss of generality, we consider on-line variations of the
stochastic vector as regards the demand functions λ(·). The
flow chart and a brief description of the algorithm is depicted
in Fig. 12. In this perspective, our methodology can be seen as
a twofold control tool for both the optimization of the pricing
assignment and the estimation of the users’ sensitivity.
At step 3), the ∆ parameter is introduced to allow small per-
turbations in real time for the measured frequencies of the con-
nection requests λmhκ(·) (with respect to the ideal value λohκ),
without updating the NPAF’s structure. Within the interval de-
fined by the ∆ parameter, the NPAF∗ maintains suboptimal
performance in virtue of the regularity of the optimal solution
with respect to small oscillations in the users’ sensitivity and
in virtue of the well-known generalization capabilities of neural
networks.
At step 4), a new estimation of the demand functions λhκ not
satisfying the optimal operating condition (A.1) is applied in
real time. Since the λ(·) are fairly mathematically tractable
functions ([9]), this task is computationally light and can be per-
formed in real time. For instance, in the second simulation sce-
nario, the estimation time horizon Te was fixed to 60 minutes
and the number nm of samples acquired on the functions λm(·),
driven by video services, was 6. This revealed to be sufficient to
approximate the new form of the function λ(·), related to video
services, with a sufficient degree of accuracy.
At steps 5) and 6), the new demand functions are computed and
the set Ω is updated accordingly. Finally, a new training phase is
performed over the updated set Ω. This procedure is faster than
the first one, since the just trained NPAF∗ is employed.
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Step 1) The set Ω  is initialized during the planning phase with respect to the predictable users’ demand functions 
(possible instances of the vector ω). 
 

Step 2) A first training phase is applied to find out the optimized NPAF ( *NPAF ) over Ω . Let oΩ  be the set 
collecting the optimal operating points of the system with respect to the solutions of the F-PAPw  (15) for every 

instance of the vector ω. 
 

Step 3) In real time, it is easily recognizable if the *NPAF  guarantees the optimal operating point. Let us define as 
m
hκλ  the measured frequency of the connection requests for the service class hκ . Using the information collected in 

the set Ω , we know that the optimal operating point hκλ  for service class hκ  is ( )o o
h h hpκ κ κλ λ= , ˆ ( ( ), )o

h hp fκ κ= ⋅ ⋅I

. If the ˆ( ( ( ), ))m
h hfκ κλ ⋅ ⋅I  is far away from the ideal value ohκλ , we therefore infer that a new user sensitivity for 

service class hκ  has taken effect. 
 

Step 4) Then, we collect some points of the function ( )m
h hkpκλ  by varying the allocated price hkp . This operation 

is performed in real time along an estimation time horizon denoted by eT  (the number of samples acquired on the 

functions ( )m
hκλ ⋅  is denoted by mn ). During this period of time, the allocated prices are suboptimal and are aimed at 

obtaining an on-line sensitivity of users’ behaviour. 
 
Step 5) On the basis of the collected measures at step 4), we estimate a new form for the demand function 

( )h hpκ κλ . To do this, a simple regression algorithm, solved by a non-linear programming solver (e.g., [36]) is 

sufficient. 
 
Step 6) We then update the set Ω  with the new function ( )h hpκ κλ  and restart the training phase over the updated 

set Ω  and return to verify the performance of the NPAF in real time (step 3)). 
 

 
 Fig. 12. Algorithm for updating the NPAF in real time.
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