
14 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 1, JANUARY 2015

A Television Channel Real-Time Detector using
Smartphones

Igor Bisio, Member, IEEE , Alessandro Delfino, Fabio Lavagetto, and Mario Marchese

Abstract—Recently, people have been interested in sharing what they are watching on TV, allowing the development of Social TV
Applications often based on mobile devices. In this context, this paper proposes IRTR (Improved Real-Time TV-channel Recognition):
a new method aimed at recognizing in real time (live) what people are watching on TV without any active user interaction. IRTR uses
the audio signal of the TV program recorded by smartphones and is performed through two steps: i) fingerprint extraction and ii) TV
channel real-time identification. Step i) is based on the computation of the Audio Fingerprint (AF). The AF computation has been
taken from the literature and has been improved in terms of power consumption and computation speed to make the smartphone
implementation feasible by using an ad hoc cost function aimed at selecting the best set of AF parameters. Step ii) is aimed at
deciding the TV channel the user is watching. This step is performed using a likelihood estimation algorithm proposed in this paper.
The consumed power, computation and response time, and correct decision rate of IRTR, evaluated through experimental measures,
show very satisfying results such as a correct decision rate of about 95%, about 2s of computation time, and above 90% power saving
with respect to the literature.

Index Terms—TV channel recognition, audience real-time detection, audio fingerprint, smartphone, energy saving

1 INTRODUCTION

THE rapid growth of social networks and the desire
to share personal information and events with other

people are the reason why more and more people are get-
ting interested in sharing what they are watching on televi-
sion. This allows the development of Social TV Applications
(STVAs) often based on mobile devices (i.e., Smartphones)
because of their pervasiveness and widespread use, as
shown in the following. Among the available solutions,
the most interesting for our purposes are applications that
allow recognizing what a person is watching on TV [1]
without active user interaction.

1.1 Future Social TV Applications (STVAs)
Future STVAs are usually based on patented sound-
recognition technologies that listen to the audio of the TV,
computer or other devices, automatically recognize the
broadcast program, and allow sharing it with friends on
Twitter c© or Facebook c©. On the other hand, the Cloud
Computing (CC) paradigm, which has grown much in the
recent past, represents a perfect operating environment
for STVAs and can be used to generate new services and
experiences. The CC paradigm is clearly defined in [2]. The
future full and efficient use of STVAs is strictly connected
to the evolution of Cloud Computing, as also confirmed by
projects such as, among others, IntoNow [1], Tunerfish [3],

• The authors are with the Department of Telecommunications, Electronic,
Electrical, and Naval Engineering, University of Genoa, Genoa
16145, Italy. E-mail: {igor.bisio, alessandro.delfino, fabio.lavagetto,
mario.marchese}@unige.it.

Manuscript received 21 Dec. 2012; revised 13 May 2013; accepted 14 June
2013. Date of publication 19 June 2013; date of current version 26 Nov. 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TMC.2013.79

Miso [4], and Yap.Tv [5]. Platforms (e.g. specific operating
system) and Infrastructures (e.g. the Internet, databases,
servers) are Services for STVAs. The smartphones are also
part of the Cloud Platform and Infrastructure and are tools
used by STVAs. STVAs are implemented in the Cloud, so
they are Software Services for the Cloud. Recognized TV
channel data represent a service for Cloud Users: they are
shared among cloud users and represent a resource pool to
be accessed. Concerning STVAs, even more important than
CC has been the growth of mobile devices because of their
impressive diffusion and for their increasing data pro-
cessing capabilities. Many applications have exploited the
proliferation of smartphones and mobile operating systems,
and used the smartphone in many different ways, e.g., as
a terminal, a node of a network, a sensor, in some cases at
the same time. [6] proposes a content sharing mechanism
based on Delay Tolerant Networks (DTNs). [7] exploits
opportunistic communications to facilitate information
dissemination in the emerging Mobile Social Networks
(MoSoNets). [8] uses the smartphone as a driving aid,
giving the driver useful information in order to reduce
fuel consumption and trip duration. An important aspect
concerning smartphone-based applications is the need to
pay attention to power consumption. Applications that are
very efficient on plugged-in devices may be unusable on
battery-supplied smartphones. Power saving is essential
because the energy resource is very limited. An interesting
example is the Chameleon application [9], a color-adaptive
web browser capable of reducing the power consump-
tion of Organic Light-Emitting Diode (OLED) displays.

1.2 Paper Contribution
In the evolutionary context of mobile devices and cloud
computing, our paper introduces a TV channel real-time

1536-1233 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BISIO ET AL.: TELEVISION CHANNEL REAL-TIME DETECTOR USING SMARTPHONES 15

detector called IRTR, where the TV audio signal is received
and processed by a smartphone that computes its fin-
gerprint and transmits it through a telecommunication
network such as the Internet to a server which recog-
nizes the TV channel by comparing the received fingerprint
with a set of reference fingerprints through a likelihood-
estimation-based process. The proposed IRTR solution, pre-
liminarily introduced in [10], automatizes the process of
Audience detection, thus increasing the value for adver-
tisers, and it focuses on power saving both within the
algorithm and through the use of the CC architecture,
which allows a significant portion of the required tasks to
be performed by remote servers, saving important smart-
phone computation and energy resources while keeping the
recognition process reliable and fast. The proposed IRTR
solution cannot distinguish between a TV channel and its
High Definition (HD) version since their audio components
are identical and the IRTR algorithm is based on audio con-
tent without employing user cooperation or watermarking
techniques. If, on one hand, this could represent a limi-
tation on the proposed solution, on the other hand, the
opportunistic nature of the IRTR solution, i.e., no cooper-
ation is required, may help to extend the set of potential
users involved in a possible audience-monitoring applica-
tion, in which it is not necessary to distinguish between a
TV channel and its HD version.
The rest of the paper is organized as follows. In Section 2
the motivation behind the IRTR development are outlined.
Section 3 describes related scientific works. In Section 4 the
IRTR architecture is proposed.The IRTR Audio Fingerprint
extraction algorithm and its improvement to better fit
mobile devices’ needs, in particular in terms of battery life,
is described in Section 5. Section 6 focuses on the proposed
IRTR channel recognition algorithm. Section 7 shows IRTR
performance evaluation.

2 MOTIVATION FOR IRTR DEVELOPMENT

In recent years both academia and industry have been
developing solutions and technologies aiming at making
the television more interactive. A study by Yahoo and
Nielsen [11] proves that 86% of mobile Internet users (and
92% of the people in the 13 - 24 age range) use their
mobile devices while watching TV. This presents a com-
pelling opportunity for content providers and advertisers
to integrate TV experience and mobile platforms in order
to offer new services. Social TeleVision Applications (STVA)
are often smartphone applications that synchronize the con-
tent shown on the device screen (called “second-screen”)
with the current TV content (visible on the “main screen”)
by automatically recognizing what the user is watching
on TV [1]. The European project NoTube [12] is focused
on connecting TV and Web content through Linked Open
Data to enhance the TV experience, for example by rec-
ommending programs of interest to the user, including
custom advertisements. The TV channel detection is per-
formed by the user in the mentioned cases. IRTR could
be easily integrated with these applications by providing
the automatic detection of the channel and, also, collecting
statistics about the audience of a show without any user
interaction and any additional device. Currently, these kind

of statistics are collected by specific companies using ad hoc
meters. This approach limits the number of monitored users
because of the meter availability. For example, in the U.K.
the Broadcasters’ Audience Research Board (BARB) [13],
which is the company providing the industry standard tele-
vision audience measurement service for broadcasters and
the advertising industry, monitors a reporting panel of 5100
homes, selected to be representative of 25200000 TV house-
holders. According to [14] there are currently an estimated
12000000 adult consumers in Great Britain who use a smart-
phone. All these people might become part of the reporting
panel by only installing IRTR on their smartphones without
any direct intervention nor any additional device installed
at home.

3 RELATED SCIENTIFIC WORK

3.1 Audio Information Retrieval
In the last decade audio recognition in the form of Audio
Information Retrieval (AIR) has drawn attention from
academia and industry. AIR is the action of recover-
ing/recognizing audio data within a set of pre-recorded
audio traces. Most scientific works related to AIR deals
with music content identification, which means identifying
a song among those available in a pre-computed database.
Although many systems are extremely efficient in recog-
nizing a song from a short noisy snippet in a database
containing more than 100 000 songs, these systems can-
not recognize a TV program in real time for the reasons
described in the remainder of this section. Two processes
required by AIR, also used in IRTR, are fundamental for
audio recognition: audio identification, based on the con-
cept of Audio Fingerprint (AF), and audio recognition
strategy, to establish a correspondence between the audio
that must be recognized and the set of pre-recorded audio
traces available in a database.

3.2 Audio Fingerprint (AF)
Most work investigating the problem of Audio Information
Retrieval is based on Audio Fingerprints (AFs) [15]–[19].
An AF is a condensed digital summary, deterministically
generated from an audio signal, which can be used to
identify an audio sample or quickly locate similar items
in an audio database. A fingerprint function F maps an
audio object X, composed of a large number of bits, to
a fingerprint of only a limited number of bits. An AF
is compact because it is significantly smaller, in terms of
bits, than the audio it comes from. AFs have gathered
attention since they allow the identification of audio inde-
pendently of its format and without the need of meta-data
or watermarking. The AF-extracting methods proposed
over the years share the same basic two-step processing
of the audio samples: i) linear transform and ii) feature
extraction. Regarding the different choices in the employed
linear transformation, many solutions use the Fast Fourier
Transform (FFT) [15], [20]. [21] uses Karhunen Loeve (KL)
or Singular Value Decomposition (SVD). [22] and [23] use
power measures, which can be seen as an integration over
the whole frequency domain of a time-to-frequency trans-
form. [24] applies the Modified Discrete Cosine Transform

16 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 1, JANUARY 2015

(MDCT). Wavelet transforms are also employed, e.g. in [25]
and [26].

As for feature extraction, [27] and [28] use the Mel-
Frequency cepstrum. [29] is based on the Spectral Flatness
Measure and [30] on information given by the position of
spectral centroids. As already mentioned the smartphone
implementation of the application forces us to take into
account power issues: each CPU cycle leads to a decrease
in battery life.

3.3 Audio Recognition Strategy
Concerning the recognition strategy, all presented related
work employs static databases of a limited and somehow
defined number of elements. The issue of database retrieval
has been addressed in efficient and elegant ways, mainly
by means of hash tables [15], which allow to short-list a
subset of candidates among which one is chosen, accord-
ing to some kind of metric (e.g. the Hamming distance in
the case of [15]). [31] instead utilizes information about the
position both in time and frequency of spectral peaks to
build the AF, while the recognition strategy relies on a like-
lihood estimation based on the number of matching peaks.
These retrieval processes are efficient in the case of music
identification because the reference database is static and
old reference AFs always represent a valid entry (i.e., a
user may always listen to an old song). On the other hand,
they are not as suitable for real-time TV recognition, since
i) the reference database should be constantly updated in
real time through the fingerprints computed from the sig-
nals received by the monitored channels, and ii) generally,
reference AFs older than a given time (defined empirically
in this paper in the next section) are not useful and must be
discarded because the recognition algorithm operates with
a small delay, with respect to real-time TV channels. Such
delay is typically introduced only by the communication
network (e.g. the Internet) and by delayed-TV systems such
as TiVo [32]. In short, TV channel audio recordings lose
their importance for TV channel recognition proportionally
to their distance from the current time.

3.4 IRTR Relation With the State of the Art
IRTR aims at implementing a system based on a client-
server architecture capable of labeling noisy audio record-
ings with the name of the TV channel that is watched by
a user. Audio recording and feature extraction duties are
carried out by a smartphone device. For this purpose IRTR
uses Philips’ Audio Fingerprinting (AF) algorithm widely
used for music information retrieval [15], modified by tun-
ing the basic parameters to decrease the computational
load, making it more suitable for smartphone processing
platforms. An ad hoc cost function has been proposed to
select the best set of parameters, as explained in the fol-
lowing. A novel time-shift-invariant likelihood estimation
algorithm is proposed to obtain real-time TV channel audio
recognition. While music identification is a well investi-
gated topic, to the best of the authors’ knowledge, real-time
detection of the audio of a TV program is still an unex-
plored subject for what concerns the state of the art of signal
processing.

Fig. 1. Overview of the IRTR system architecture.

4 IRTR SYSTEM ARCHITECTURE

4.1 General Scheme
The IRTR system architecture is shown in Fig. 1. The IRTR
method is based on a client-server model. Clients are
installed on smartphones. Android-based smartphones
have been used to test IRTR, as described in Section 7,
but the IRTR implementation is independent of the spe-
cific smartphone technology. The server is implemented on
a computer running Linux OS in our case. Client and server
are connected through the Internet. This architecture may
be extended by adding multiple servers, each dedicated
to specific contents, such as Live Radio Broadcast, movies
or songs. The fingerprint extracted by the smartphone can
be shared, exploiting the advantages of cloud computing,
by all these servers. In any case, the extension to multiple
servers is left for future investigation. The employed archi-
tecture was chosen by following previous similar solutions
in the literature, such as [15]. An alternative architecture
might avoid using a server-side database by placing most
of the effort on the smartphones. Nevertheless the proposed
client/server architecture was preferred for the following
reasons.
i) The smartphone cannot reasonably constantly monitor
TV channels. It would require that a TV receiver be always
active on the smartphone, as well as the reference finger-
prints extractor. It would cause a relevant consumption of
smartphone computational resources and energy. Moreover,
considering that the only way to receive TV transmis-
sions with a smartphone (avoiding additional hardware) is
by using the mobile connection (2G/3G), the reception of
many simultaneous TV streams would imply the saturation
of the mobile connection capacity. Additionally, although
the number of reference fingerprints in the database is lim-
ited (from less than ten fingerprints, as in the case of this
paper, to no more than hundreds), it must be continuously
stored and updated. These actions require memory, which
is particularly precious in smartphones. Eventually, mov-
ing the task of monitoring TV channels to the smartphone
implies that the action must be performed by all clients.
On the other hand, this task, which is identical for all the
clients, may be performed only once by the server.
ii) The server could be employed for collecting users’ statis-
tics. It is crucial for audience monitoring applications in

BISIO ET AL.: TELEVISION CHANNEL REAL-TIME DETECTOR USING SMARTPHONES 17

Fig. 2. Block diagram of the audio fingerprint extraction algorithm
presented in [15].

which the proposed solution can be employed. The detailed
role of smartphone and server within the IRTR architecture
is detailed below.

4.2 Smartphone
The smartphone records a short snippet of the TV audio
channel using its microphone, it processes it by extracting
the AF through the AF extraction algorithm described in
Section 5.1 and it sends the AF to the Server for labeling.
The fingerprint is a two-dimensional matrix whose num-
ber of rows is proportional to the length of the audio from
which it is extracted. The fingerprint obtained by the smart-
phone and sent to the server is called Captured Audio
Fingerprint (CAF).

4.3 Server
The server, in order to monitor TV programs in real time,
must be capable of receiving Digital Video Broadcasting
signals, extracting the audio of each channel to be moni-
tored, computing its fingerprint in real-time, and updating
the database with the fingerprints computed from all mon-
itored channels. The fingerprints contained in the database
are called Reference Audio Fingerprints (RAF). The server
implements the AF-based audio recognition strategy by
searching for a correspondence between the CAF sent by
the client and one of the RAFs, and possibly labeling the
CAF with the name of the channel from which it was
extracted. Obviously this last step, which is the aim of
audio recognition, may fail or lead to a wrong choice. To
avoid the infinite growth of the database the oldest fin-
gerprints must be dropped after a certain time. In our
tests, the database contains the RAFs extracted from the
last 5 minutes of the audio of each monitored channel and
it is updated by using a First In First Out (FIFO) policy,
where the oldest fingerprint row is dropped every time
a new one is created. The 5-minutes temporal limit is an
empirical value that allows the system to also detect slightly
delayed transmissions. The IRTR system can face delays,
whose order of magnitude ranges from milliseconds to
a few seconds, due to network access and transmission
technologies (e.g., terrestrial, satellite or cable broadcast-
ers). The reference database stores fingerprints representing
the last 5 minutes, with respect to the current time, of
each TV channel, as reported at the end of Section 4.3.
Considering that the captured fingerprint represents a few
seconds of recorded audio, the stored reference fingerprints
surely contain the acquired one. Actually, the 5-minutes

Fig. 3. Audio fingerprint structure.

recordings represent, in practice, a sort of temporal buffer
aimed at absorbing possible delays and they are employed
to avoid possible declines in performance due to delay to
access to the Cloud when the captured fingerprint is sent to
the server.

5 IRTR AUDIO FINGERPRINT COMPUTATION

5.1 Basic Computation
The fingerprint extraction algorithm used by IRTR is based
on the approach introduced by Philips Research [15],
reported in the following and shown in Fig. 2. The follow-
ing steps are performed in order:

a) An audio recording of LR[s] of duration sampled at
a rate of RS[Hz] is divided into frames of LF � 0.37s,
with an overlap factor OL.

b) Each frame is filtered by means of a Hanning win-
dow function [33], in order to smooth the signal and
to reduce spurious frequency components.

c) The Fast Fourier Transform (FFT) and squared mod-
ulus are applied to each frame in order to obtain the
energy spectrum of each frame.

d) The spectrum is divided into Mbins logarithmically
spaced frequency bins and the energy is computed
for each bin. The logarithmic spacing is chosen
because of the similarity with the Human Auditory
System [34].

e) By denoting the energy of band m of frame n by
E(n, m), the output of the fingerprint extraction block
is defined as in (1). A set of features H(n, m) is
computed for every frame n.

H(n, m) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if E(n, m) − E(n, m + 1) − (E(n − 1, m)

−E(n − 1, m + 1)) ≥ 0

0 if E(n, m) − E(n, m + 1) − (E(n − 1, m)

−E(n − 1, m + 1)) < 0.

(1)

Features H(n, m) can assume only binary values: either
“0” or “1”. The features extracted for each frame com-
pose a row of the fingerprint, thus the fingerprint is a
bi-dimensional matrix with Mbins −1 columns and Nf rows,
where Nf is the overall number of considered frames.
The content of this fingerprint is shown in Fig. 3. The m-th
column is the contribution of frequency m for each frame.
The n-th row is the contribution of frame n for each fre-
quency bin, from 1 to Mbins − 1, and it may be defined as
the fingerprint of frame n. Since the CAF and the RAFs
refer to signals of different duration, the number of frames
in CAF and RAFis obviously different. In the following NC

f
and NR

f denote, respectively, the number of CAF and RAF
frames. The parameter values employed in [15] are listed
in Table 1.

18 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 1, JANUARY 2015

TABLE 1
Fingerprint Parameters

5.2 Modifications Aimed at Reducing the
Computational Load and Consequent Energy
Consumption

An important part of the IRTR method is the improve-
ment of the AF extraction process, summarized in 5.1,
in terms of computational load. Our aim is to make the
extraction process as fast as possible in order to reduce
its computational load, keeping the performances of the
system high in terms of correct detections. The aim is to
have a trade-off between two attributes: detection accuracy
and computational time. The fingerprint extraction algo-
rithm can be modified by setting the following parameters:
duration of the recording, LR, overlapping factor between
two consecutive frames, OL, and sample rate of the audio
acquisition, RS. Two different performance metrics are of
particular interest: detection rate RD(LR, OL, RS) and finger-
print extraction duration τ(LR, OL, RS), which represent the
detection accuracy and computational time, respectively.
Both can be considered as a function of the AF algorithm
parameters. The detection rate is defined as the number
of correct decisions divided by the total number of tri-
als. The fingerprint extraction time is the time required by
the client (i.e. the smartphone) to compute the fingerprint.
Our aim is to reduce the computational time while limit-
ing the decrease in detection accuracy by acting on LR, OL
and RS. We define two different cost functions, each one
evaluating a performance metric:

v1 = 1
RD(LR,i, OLj, RS,k)

− 1

v2 = τ(LR,i, OLj, RS,k)

max τ(LR,i, OLj, RS,k)
. (2)

A property of functions v1 and v2 is that they equal to 0
when the ideal metric value is reached, RD = 1 and τ = 0
respectively. It was decided to merge the two cost functions
by summing them, therefore the final cost function is:

C(LR,i, OLj, RS,k) = v1 + v2. (3)

Given its definition, shown in (3), minimizing the cost func-
tion C(·) is equivalent to finding a trade-off between detec-
tion accuracy and computational time, since C(·) decreases
when RD(·) increases and when τ(·) decreases.

Weights ω1 and ω2 such that ω1 + ω2 = 1 with 0 ≤
ω1 ≤ 1 and 0 ≤ ω2 ≤ 1 may be used as multiplicative
factors for v1 and v2, respectively, in (3), to give more
or less importance to one of the metrics depending on
the performance aims. Weights investigation is left to fur-
ther research. Cost function (3) ensures that the ideal cost
C(LR,i, OLj, RS,k) = 0 is obtained with a perfect detection
rate, RD(LR,i, OLj, RS,k)= 1, and a null computational time

τ(LR,i, OLj, RS,k)=0, as evident in 4.

C(LR,i, OLj, RS,k) =
(

1
RD(LR,i,OLj,RS,k)

− 1
)

+
+ τ(LR,i,OLj,RS,k)

max τ(LR,i,OLj,RS,k)
.

(4)

Since functions RD(LR,i, OLj, RS,k) and τ(LR,i, OLj, RS,k)

are not known in closed form, they can only be mea-
sured. Optimization methods such as Multi-Objective
Optimization (MOP) [35] can not be applied. The fin-
gerprint extraction parameters are chosen through a
brute-force minimization of the cost function, since the
dimensionality of the problem is small enough to permit
such an approach. The numerical results of the mini-
mization process are reported in Section 7.1. The chosen
parameters are not globally optimal but only the best
among all the evaluated ones. The obtained values should
be reasonably close to the optimal ones but formal opti-
mality cannot be proven. The estimation of a closed form
for functions RD(LR,i, OLj, RS,k) and τ(LR,i, OLj, RS,k) will be
a future development of this work. The closed form shall
allow using non-linear programming methods and finding
the optimal set of parameters on a continuous scale.

6 IRTR TV CHANNEL RECOGNITION

The recognition problem consists of deciding which channel
the received fingerprint belongs to. The problem of Live TV
detection does not allow building Look Up Tables as in the
Music Identification problem because, as previously stated,
the database contents change continuously (about every 100
ms with the best parameters setting) and old AFs provide
limited contribution. A suitable algorithm must therefore
be developed. Once the server receives a new fingerprint
(CAF) it must compare it to the fingerprints stored in its
database (RAFs) to find a possible correspondence. The
first required step is to provide a measure of the level of
similarity between audio fingerprints, in order to estimate
the likelihood that the two fingerprints belong to the same
audio content. It is important to take into account the
lack of synchronization between the audio stream that the
server uses to build the AF database and the audio cap-
tured by the smartphone. It is in practice very difficult to
calculate the transmission delay and to predict the exact
time difference between the server-database and the client-
smartphone. Such asynchrony calls for a suitable likelihood
estimation algorithm robust to time shifting. Two likelihood
estimation algorithms are presented in Section 6.1 and com-
pared in Section 7.5. The first one called “Direct Method” is
simply based on the computation of the Hamming Distance
between fingerprints and it is described in Section 6.1.1. The
second one, called “Reduced Complexity (RC) method”, is
introduced in this paper in Section 6.1.2 and is aimed at
reducing the complexity of the Direct method. An audience-
based scheme is proposed in 6.1.3 to implement a quick
search in the RAF database to find a correspondence.
In content retrieval architectures detection errors weigh dif-
ferently, whether they are false alarms or missed detection
errors. When a user is watching a TV channel a missed
detection occurs if the system states that the user is not
watching any of the monitored channels, while a false alarm
occurs when the channel recognized by the system is not

BISIO ET AL.: TELEVISION CHANNEL REAL-TIME DETECTOR USING SMARTPHONES 19

Fig. 4. HC (n, m) shifted over the overall length of HR(n, m) with partial
(a) and total (b) overlap.

the one the user is actually watching. In the false alarm case
the error is twice as costly, since, if the user is watching
channel A, taking the wrong decision implies i) rejecting
the hypothesis of channel A and ii) accepting the wrong
hypothesis of channel B. Furthermore, for the goal of IRTR
having a missed detection is more acceptable than recogniz-
ing a wrong channel. A method is used to set a threshold
θ on the likelihood in order to decide whether the received
fingerprint is taken from a channel or not. The overall deci-
sion method used by IRTR is presented in Section 6.1.4.
The threshold θ is computed by considering that an impor-
tant goal of the IRTR system is to keep the false alarm
probability PFA, formally defined in Section 6.2, as low as
possible. The threshold θ applied in the likelihood estima-
tion has been set in order to keep the false alarm probability
below 3 · 10−3 (PFA < 3 · 10−3) and it has been computed
by using a data set of 300 trials employed to estimate the
Probability Density Function (PDF) explicitly considered in
Section 6.2.

6.1 Likelihood Estimation
6.1.1 Likelihood Estimation Algorithm: Direct Method
Since the fingerprints are binary matrices, a reasonable met-
ric of the similarity between fingerprints is the Hamming
distance between them. HR(n, m) and HC(n, m) are the refer-
ence and the captured fingerprints respectively. It is worth
remembering that HR(n, m) and HC(n, m) have different
dimensions, as they both have Mbins − 1 columns, but the
number of HR(n, m) rows NR

f is much larger than NC
f , the

number of rows of HC(n, m). Therefore, the likelihood esti-
mation algorithm must search for the portion of HR(n, m)

most similar to HC(n, m). This is achieved by shifting the
captured fingerprint HC(n, m) over the overall length of
HR(n, m) (or vice-versa if mathematically simpler) as shown
in Fig. 4(a) and (b), and, for each shift value k, comput-
ing the Hamming distance Hd(k) as in (5). To include in
the similarity evaluation also partial overlaps of HC(n, m)

and HR(n, m), shown in Fig. 4(a), the fingerprint HR(n, m) is
extended NC

f −1 rows before and NC
f −1 rows after the orig-

inal HR(n, m) by using zero-padding so to have an overall
length of NR

f + 2NC
f − 2.

Hd(k) =
k+NC

f∑

n=k

Mbins−1∑

m=1

HR(n − k, m) ⊕ HC(n, m),

∀k ∈ [− NC
f + 2, NR

f − 1].

(5)

The Hamming distance Hd(k) is the number of positions
at which the corresponding symbols in the two overlapped
matrices, HC and extended HR, for each shift k, are different.
Having a Hamming distance value Hd(k) for each shift, the
Hamming distance ND

bit between HR(n, m) and HC(n, m) is
defined as the minimum Hd(k) over the shift k as in (6).

ND
bit = min

k
(Hd(k)) ,∀k ∈ [− NC

f + 2, NR
f − 1]. (6)

The complexity of (5) is O
(

NC
f (Mbins − 1)

)
for

each time shift k, thus the total complexity of
the formula is O

(
NC

f (Mbins − 1)(NC
f + NR

f − 2)
)

=
O

(
(Mbins − 1)

(
NC

f
2 + (NR

f − 2)NC
f

))
.

6.1.2 Likelihood Estimation Algorithm: Reduced
Complexity (RC) Method

The real-time TV detection requires a quick server response
and, therefore, a quick likelihood computation. To reduce
the complexity of the computations, the metric L we mea-
sure is a modification of the Hamming distance. Let L(k)
be the difference between the number of positions where
the bits of the two fingerprints are equal NE

bit(k) and the
number of the positions where the two fingerprints differ
Hd(k). Given NTOT

bit = NC
f ·(Mbins−1) the dimension, in bits,

of the smaller fingerprint:

L(k) = |NE
bit(k) − Hd(k)|. (7)

Having a L(k) value for each shift we proceed similarly to
the previous case by using (6):

ND
bit = min

k
(Hd(k)) ,∀k ∈ [− NC

f + 2, NR
f − 1]

NE
bit = max

k

(
NE

bit(k)
)

,∀k ∈ [− NC
f + 2, NR

f − 1] (8)

therefore,

L = max
k

|NE
bit(k) − Hd(k)| = |NE

bit − ND
bit| =

= |NTOT
bit − 2ND

bit| = |2NE
bit − NTOT

bit |,
∀k ∈ [− NC

f + 2, NR
f − 1].

(9)

Such metric is 0 when NE
bit = ND

bit, i.e. when the Hamming

distance between the two fingerprints is
NTOT

bit
2 . Both when

ND
bit = 0 and when ND

bit = NTOT
bit , L = NTOT

bit . This is correct,
in our view, because a fingerprint and its negated convey, in
fact, the same information. Adding the |·| operator is a way
to consider this within the likelihood estimation algorithm.
The likelihood value L can be normalized between 0 and 1
as in (10).

Ln = L/NTOT
bit . (10)

20 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 1, JANUARY 2015

The RC likelihood estimation algorithm exploits the fact
that the metric L can be computed very efficiently through
the cross-correlation of two sequences by using the Fast
Fourier Transform (FFT). The first step is defining H′(n, m)

as the fingerprint H(n, m) where the “0”s are replaced with
“−1”s, as shown in (11).

H′(n, m) = 2 · H(n, m) − 1,∀n, m. (11)

The product between an element of the converted matrix
H′

R(n, m) and another element of the converted matrix
H′

C(n, m) is 1 if they are equal and −1 if they are different.
This allows to compute the metric value L(k) for each shift
k by multiplying, element by element, the shifted matrix
H′

R(n − k, m) and the matrix H′
C(n, m) and then adding the

results of each element product:

L = max
k

(L(k)) =

max
k

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣
∣

Mbins−1∑

m=1

NR
f +2NC

f −1
∑

n=−NC
f +2

H′
R(n − k, m) · H′

C(n, m)

∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎠ ,

, k ∈ [− NC
f + 2, NR

f − 1]

(12)

The summation over n in (12) is the one-dimensional
cross-correlation RH′

RH′
C
(k, m) between each column of

H′
R(n, m) and the corresponding H′

C(n, m) column. In gen-
eral this operation equals the convolution between the
columns of H′

R(n, m) and the corresponding columns of
H′∗

C (−n, m), the complex conjugate of H′
C(n, m). In our case,

being H′
C(n, m) real for all possible values of m and n,

H′∗
C (n, m) ≡ H′

C(n, m), (14) is true.

RH′
RH′

C
(k, m) =

NR
f +2NC

f −1
∑

n=−NC
f +2

H′
R(n − k, m) · H′

C(n, m) (13)

= H′
R(n, m) ∗ H′∗

C (−n, m)

= H′
R(n, m) ∗ H′

C(−n, m).

Merging (12) and (14) we can re-write (12) as follows:

L = max
k

⎛

⎝

∣
∣
∣
∣
∣
∣

Mbins−1∑

m=1

H′
R(n, m) ∗ H′

C(−n, m)

∣
∣
∣
∣
∣
∣

⎞

⎠ ,

, k ∈ [− NC
f + 2, NR

f − 1]

(14)

Since cross-correlation RH′
RH′

C
is a convolution, it can be

computed efficiently by using Fast Fourier Transform (FFT)
algorithms. The theoretical computational complexity of
the FFT for a sequence of length N is O

(
N
2 log2(N)

)
, and

in practice, since FFT algorithms process sequences whose
lengths are powers of two, O

(
2�log2 N

2

⌈
log2(N)

⌉)
. The one-

dimensional convolution of two sequences of length N is
calculated in the frequency domain by multiplying element
by element the Fourier transform of both sequences and
then computing the Inverse Fourier transform of the
product sequence. The complexity of this operation is due
to 3 FFTs performed on sequences of length 2�log2 N and to
2�log2 N multiplications. Therefore the overall complexity
is O

(
3
2 · 2�log2 N ⌈

log2 N
⌉ + 2�log2 N). In our case, since

the shorter sequence is zero-padded up until the length of
the longer one and the one-dimensional cross-correlation

TABLE 2
Italian Share of Audience Statistics During the Daily Time Slot

Lasting from 20.30 to 22.30, October 2011, [36]

has to be computed for each of the (Mbins − 1) columns
of H′

R(n, m) and H′
C(n, m), the overall complexity is

O
(

(Mbins − 1) ·
(

3
2 · 2

⌈
log2 NR

f

⌉ ⌈
log2 NR

f

⌉
+ 2

⌈
log2 NR

f

⌉))

.

This value must be compared with
O

(
(Mbins − 1)

(
NC

f
2 + (NR

f − 2)NC
f

))
, which is the com-

plexity of the Direct method. A full numerical comparison
is reported in Section 7.5 but it is important to observe
from the start that RC method complexity does not depend
on the length of the CAF fingerprint.

6.1.3 Search Algorithm
The idea concerning the database search is based on the
observation that television audience ratings are far from
being equally distributed. For example, what currently hap-
pens in Italy is that, though more than 150 channels are
broadcast, over 70% of the audience is gathered around no
more than 7 channels. Table 2, for example, shows the aver-
age share of TV watchers for the 7 most watched Italian TV
networks during October 2011 [36]. Actually, the values are
not time-invariant and are referred to a particular time slot
(from 20.30 to 22.30) and to a specific month. Nevertheless,
using audience statistics allows to sort the channels to
be matched in the database from the most- to the least-
watched. Such searching policy should reduce the time
required to find the correct channel, on average, therefore
speeding up the recognition process.

6.1.4 Decision Algorithm
The overall decision algorithm applied by IRTR is described
by the flowchart in Fig. 5.

When a query fingerprint is received, the server com-
pares the received fingerprint with the first fingerprint of
the database (the most watched channel according to the
available statistics). If the likelihood score L is higher than
the threshold value θ , whose computation is explained
in the next section, the server decides that the user is watch-
ing that channel, otherwise it compares the received finger-
print with the following fingerprint stored in the database.
If, after comparing the received fingerprint with all the
fingerprints of the N monitored channels from the most-
to the least-watched channel, the system has not found a
match, it concludes that the user is not watching any of the

BISIO ET AL.: TELEVISION CHANNEL REAL-TIME DETECTOR USING SMARTPHONES 21

Fig. 5. IRTR decision algorithm flowchart.

monitored channels. As described in Section 6.1.3, the avail-
ability of audience statistics and, consequently, of a priori
probabilities of audience values may improve the compu-
tational speed. Table 2 is only an example referred to the
Italian case used to produce the results shown in this paper
but it may be helpful to understand: without having any
information on the audio captured by the smartphone of the
user, the probability (from Table 2) that the user is watching
one of the seven most-watched Italian Television channels
is over 73%. This means that by sorting the channels fin-
gerprints in the database from most- to least-watched, more
than 73 times out of 100, the search will stop within 7 cycles
of the algorithm, avoiding useless operations and saving
time retrieving a quicker response. Although the estima-
tion of these a priori probabilities is out of the scope of this
paper, it is evident that the system can collect statistics on
the channels watched by the users and therefore estimate
the a priori probabilities.

6.2 Optimal Threshold
Within a system monitoring N TV channels, the problem of
deciding which channel the user is watching is composed of
N sub-problems: for each i-th (i ∈ [1, N]) stage of the deci-
sion process the system must decide between hypothesis H1
(the user is watching the i-th channel) or hypothesis H0 (the
user is not watching the i-th channel). As can be seen from
the flow chart in Fig. 5, the threshold value θ plays a cru-
cial role by directly affecting the detection rate. The system
can fail by assessing the user is watching the i-th channel
(H1) while the user is not watching it (H0) so causing a False
Alarm, or, vice-versa, it can fail by assessing that the user is
not watching the i-th channel (H0), while the truth is that
the user is watching it (H1), causing a Missed Detection.
As said, Missed Detections are much more acceptable than
False Positives. The Maximum Likelihood criterion can-
not be applied because, even if statistics on the likelihood
values L referred to H0 class can be inferred, we do not
have general information about the L values of the H1 class
since they are strongly dependent on the audio Signal-
to-Noise Ratio (SNR). As anticipated in Section 6.1, the
reason for the setting of θ is to maximize the detection
probability while keeping the false alarm probability PFA

Fig. 6. Probability density function of normalized likelihood scores Ln,
as in (10) referred to H0 hypothesis.

below an acceptable value (3 ·10−3). We can define the false
alarm probability as the probability of deciding H1 while
the ground truth is H0, P(H1|H0). The Probability Density
Function (PDF) of the likelihood value L given H0 pL(L|H0),
assumed normally distributed, has been estimated through
a finite number of observations of H0 class realizations.
To do so the likelihood values L obtained when the client is
listening to the audio of a non-monitored channel have been
collected. Obviously this corresponds to the event (H1|H0)

because the CAF is related to a non-monitored unknown
channel. Being Li the L value measured during the i-th
observation and No = 300 the total number of observations
the sample mean μ = L̄ = 1

No

∑No
i=1 Li and the sample vari-

ance σ 2 = s2 = 1
No

∑No
i=1(Li − μ)2 have been used to obtain

the estimated normally distributed PDF (15). The assump-
tion that the PDF is normally distributed is qualitatively
justified in Fig. 6, and is tested numerically in Section 6.2.1,
where the results of the Lilliefors Test for Normality are
reported.

PFA = P(H1|H0) = P{L > θ |H0} =
=

∫ +∞

θ

pL(x|H0)dx =
∫ +∞

θ

1

σ
√

2π
e− (x−μ)2

2σ2 dx. (15)

The threshold θ has been set to assure that PFA < 3 ·10−3

by applying the “3σ Rule”. In general, this rule is employed
to obtain an approximate probability estimate of a quantity,
given its standard deviation, if the reference population is
assumed normal. This criterion was chosen because it is
widely used in statistics. The “3σ Rule” states that, for a
normal distribution, nearly all values lie within a distance
of 3 standard deviations from the mean. In mathematical
terms, the the area of the two tails starting from 3σ from
the mean of a normal distribution is 3 · 10−3. Considering
a single Gaussian tail for the sake of simplicity:

∫ +∞

μ+3σ

1

σ
√

2π
e− (x−μ)2

2σ2 dx = 1.5 · 10−3. (16)

Therefore the threshold value has been set to θ = μ+3σ .

6.2.1 Normality Test
We previously assumed the Probability Density Function
of the H0 class to be normally distributed. The proof is
given in this section by performing the Lilliefors Test for
Normality [37]. For the sake of briefness, the mathematical
detail of the test is not reported.

22 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 1, JANUARY 2015

Fig. 7. Cost function values with variable LR (OL = 24
32 , RS = 22050

[Hz]).

The Lilliefors Test is an adaptation of the Komolgorov-
Smirnov Test and it is used to test the hypothesis that
data come from a normally distributed population, i.e.,
that there is no difference between the observed distribu-
tion and a normal distribution with mean and variance
equal to the sample mean and sample variance of the pop-
ulation. The alternative hypothesis is that the population
is not normally distributed. The normality test is based
on the concept of statistical significance, denoted by α,
which is the rejection probability of the normality hypoth-
esis when it is true. Defining, coherently with the literature
in the field, the amount of evidence against the normal-
ity hypothesis as p-value then it is possible to state that
data come from a normally distributed population when
the p-value is smaller than the significance level α, with a
confidence level higher than 1 −α. Though the selection
of the significance level is arbitrary, in our paper a sig-
nificance level of α = 0.05 was chosen, as conventionally
done for most applications. The Lilliefors Test was run -
using an ad hoc MatLab tool - on the observation vector
from which the histogram in Fig. 6 was produced. The
result is a p-value equal to 0.0437, strictly lower than ref-
erence α. This result allows assuming that the PDF of the
H0 class is normally distributed with a confidence level of
at least 95%.

7 PERFORMANCE INVESTIGATION

An algorithm executed on mobile devices such as smart-
phones has to deal with battery lifetime. It is therefore
crucial to limit the amount of CPU operations. For these rea-
sons, in Section 5.2, we described the method we applied to
find an improved set of parameters aimed at reducing the
energy consumption for the fingerprint computation algo-
rithm, which is the main task performed by the smartphone
from the computational load viewpoint. The results regard-
ing the parameter configuration, as well as the selection of
the best tested parameter configuration, are presented in
Section 7.1. Section 7.2 reports the comparison, concern-
ing the overall system performance, between IRTR when
the best parameter configuration analyzed in Section 7.1 is
employed and IRTR with the parameter configuration used
in the Philips approach [15]. The performance is evaluated
in terms of:

• Detection rate RD: number of correct decisions
divided by the number of trials;

• AF computation time τ : time the client needs to
compute the fingerprint;

Fig. 8. Cost function values with variable OL (LR = 6 [s], RS = 22050
[Hz]).

• Consumed power and its integral Consumed energy
by the Client, measured for one trial (from the
channel detection triggering to the server response);

• Response time: time elapsing from the channel detec-
tion triggering to the server response.

In Section 7.4 the power consumption of IRTR imple-
mentation is compared with the commercial application
IntoNow [1]. The client employed for all the tests described
in this paper, on which te application implementing the
IRTR algorithm and the IntoNow application were run,
was a Samsung Galaxy S Android smartphone. The like-
lihood estimation algorithm, implemented in the server,
has been tested in Section 7.5: the proposed RC method
for likelihood estimation is compared with the Direct
method. The results highlight the advantages in terms of
computational complexity and, consequently, of computa-
tional time.

7.1 Fingerprint Parameters Configuration
Section 5.2 describes the changes to the fingerprint extrac-
tion algorithm by setting the following parameters: LR,
duration of the recording; OL, overlap of two consecutive
frames; RS, sample rate of the audio acquisition. This sec-
tion presents the results of this process by showing the
value of the cost function C obtained by changing the AF
parameter values (LR, OL, RS).

With the aim of finding a suitable parameters combi-
nation, the cost function C was minimized by applying
a brute force procedure. All possible combinations of the
tested parameters, defined below, were employed and the
values assumed by the cost function were evaluated. Each
parameter combination was evaluated by 20 trials (i.e., each
point reported in the graphs is the average over 20 tri-
als). So, since 75 combinations were evaluated, as detailed
below, 1500 trials have been completed.

In more detail, the recording length LR was varied from
2 [s] to 10 [s] (with a 2 [s] step); the following overlap rates
OL were considered: 15

32 , 24
32 , 28

32 , 30
32 and 31

32 ; three possible
values of sample rate RS were applied: 11025 [Hz], 22050
[Hz] and 44100 [Hz]. Being TV audio the reference signal
of this paper, these sample rates have been chosen because
they are usually employed by algorithms for music identifi-
cation aimed at tracking all possible human audible sounds
and extending the applicability of the solutions beyond
typical speech-based applications working at 8000 [Hz]. As
shown below, the best trade-off between accuracy and com-
plexity is reached with RS = 22050 [Hz]. The employment

BISIO ET AL.: TELEVISION CHANNEL REAL-TIME DETECTOR USING SMARTPHONES 23

Fig. 9. Cost function values with variable RS (LR = 6 [s], OL = 24
32).

of different sample rates implies higher values of the cost
function.

The most meaningful results (extracted from all tested
combinations) of this procedure may be seen in Figs. 7
to 9. Each figure reports the behavior of the cost function
C obtained by varying a single parameter (the recording
length in Fig. 7, the overlap rate in Fig. 8, and the sample
rate in Fig. 9) while keeping constant, at the value assur-
ing the minimum C, the others. These results show that the
parameter combination that minimizes the cost function is
LR = 6s, OL = 24

32 and RS = 22050Hz.

7.2 Comparison With the Parameter Configuration
Used in the Original Philips Approach

Table 3 compares the values of the cost function C, of the
detection rate RD, of the computation time τ , and of the con-
sumed energy for each trial by using the IRTR parameter
configuration assuring the best performance (LR = 6s, OL =
24
32 , RS = 22050Hz) among the tested ones and by using the
combination LR = 10s, OL = 31

32 and RS = 44100Hz adopted
by the traditional Philips AF approach. Table 3 also shows
the percentage gain provided by IRTR with respect to the
configuration used by the Philips approach, which because
of the longer recording length, the almost complete over-
lap, and the higher sample rate is very accurate and assures
a detection rate of about 100%, although, in this case, the
Samsung Galaxy S Android smartphone requires more than
1 minute to complete the fingerprint computation and more
than 30000 mJ for each trial. Our best configuration guar-
antees a detection rate of about 95% but requires less than
2.5s to compute the fingerprint, and less than 3000 mJ for

TABLE 3
Comparison Between IRTR Applying Original

(LR = 10s, OL = 31
32 , RS = 44100Hz) and Improved

(LR = 6s, OL = 24
32 , RS = 22050Hz) Audio

Fingerprint Parameters

Fig. 10. Power consumption of the IRTR algorithm with the following
parameter configurations: (LR = 6s, OL = 24

32 , RS = 22050Hz) and

(LR = 10s, OL = 31
32 and RS = 44100Hz).

each trial. This result meets real-time requirements as well
as those imposed by smartphone platforms and is very sat-
isfying from an operative viewpoint. The improvement in
percentage with respect to the original Philips approach
is ∼ 96.3% concerning time and ∼ 91% concerning energy.
Fig. 10 shows the instant power consumption during a trial
for the two considered parameter configurations, with the
area under the curve being the energy consumed, reported
in Table 3. The tool we used to evaluate power consumption
is PowerTutor, an application for Android phones devel-
oped jointly by the University of Michigan and Google,
which displays the power consumed by major system com-
ponents such as the CPU, network interfaces, the display
and the GPS receiver for every running application. [38]
shows the reliability of PowerTutor: it provides measures,
for 10-second intervals, with an average error of 0.8% and a
maximum error of 2.5% with respect to the measurements
taken by a hardware meter.

7.3 IRTR Performance with Different
Signal-to-Noise Ratios

The accuracy of the IRTR system depends on the Signal-to-
Noise Ratio (SNR). IRTR has been tested by disturbing the
TV audio with white noise, which is easily reproducible
and leads to non-ambiguous easily repeatable test condi-
tions. White noise represents a worst-case scenario because
it is distributed over all frequencies while, everyday back-
ground noise (e.g., people talking, ringing phones) is con-
centrated within given and limited frequency ranges. SNR
is computed by using an IEC 651 standard-compliant sound
level meter that measures the value of 1+SNR. The adopted
procedure measures the signal-plus-noise level S + N and,
after switching off the audio source, the noise level N. In
the described conditions the obtained results, in terms of
detection rate RD, are reported in Table 4. Reported values
show that, if the noise level is equivalent to the signal level,
the IRTR performance is still satisfactory.

TABLE 4
IRTR Accuracy Performance with Different Signal

to Noise Ratios

24 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 1, JANUARY 2015

Fig. 11. Total power consumption of IRTR and IntoNow algorithms.

7.4 Power Consumption Comparison with Existing
IntoNow Platform

IntoNow [1] is a successful consumer tech company that
offers a solution (based on the patented SoundPrint plat-
form) providing users with the ability to quickly recognize
TV contents. The performance of the IRTR and IntoNow
solutions are compared in this section, as far as power
consumption is concerned, by using PowerTutor, as in
the previous case. It is in practice very difficult to fairly
compare IntoNow and IRTR in terms of recognition accu-
racy because their databases are different: IRTR monitors
Italian channels while IntoNow operates on U.S. channels
so the comparison is limited to power consumption in this
paper. The IntoNow algorithm is not known but some
of its features can be inferred by the trials’ results. The
IntoNow platform response time is not fixed because, as
far as we can understand, it does not send all the data
at the end of the processing waiting for the response, but
it implements a progressive sending mechanism. It starts
sending data during audio acquisition and it stops when
a response is received; if no response is received within
20 s it concludes that it is not able to detect the chan-
nel. We have tested the IntoNow solution in two scenarios:
the Best Case (BC) and the Worst Case (WC). BC occurs
when IntoNow immediately detects the channel, WC when
IntoNow does not recognize the channel. Concerning IRTR,
WC and BC lead to the same energy consumption because
IRTR does not implement any progressive sending mech-
anism. The implementation of this type of mechanism can
be a future development of IRTR aimed at further energy
saving. Fig. 11 shows the power consumption over time
of IRTR, obviously using the best parameter configura-
tion (LR = 6s, OL = 24

32 , RS = 22050Hz) and IntoNow in
the Best and Worst Case scenarios, defined above. Table 5
summarizes Fig. 11 by explicitly showing the response
time and consumed energy of the solutions compared in
Fig. 11. The IRTR performance is close to the Best Case
of IntoNow in terms of energy consumption and response
time. A possible further improvement for IRTR may be

TABLE 5
Comparison Between IRTR and IntoNow

Fig. 12. CPU power consumption of IRTR and IntoNow algorithms.

the implementation of the fingerprint progressive sending
mechanism.

Because of the difference between the IRTR and IntoNow
implementations it is interesting to evaluate separately the
energy consumed by the CPU and by the network inter-
face. The network interface we need to monitor in our test
is the WiFi card since the smartphones are connected to the
Internet through the WiFi network of the laboratory. Figs. 12
and 13 show the power consumption profile of the CPU
and the WiFi interface, respectively. Both figures contain the
measured power in [mW] over time, as well as the value of
the consumed energy, for IRTR, IntoNow BC, and IntoNow
WC. Concerning the IRTR implementation, 98.77% of the
energy is consumed by the smartphone’s CPU and only
1.23% by the Wifi interface. IntoNow transmits more data
and 77.20% of the consumed energy is spent by the CPU
and 22.80% by the Wifi interface, in the BC, and 59.37% by
the CPU and 40.63% by the Wifi card, in the WC. The IRTR
implementation does not involve the network infrastruc-
ture as much, thus avoiding overloads and requiring less
bandwidth, but its CPU consumption curve has a peak at
the fingerprint computation. This result may be improved
since our implementation is not yet engineered, i.e., the
code is not optimized, since at the moment it is a prod-
uct of academic research. We do not know what operation
corresponds to the IntoNow CPU peaks since the algorithm
is unknown. Moreover, it is reasonable to assume that the
IntoNow code is fully engineered because it is a successful
commercial application.

7.5 Likelihood Computation Algorithm Evaluation
In this section the performance of the Likelihood
Estimation algorithm introduced in Section 6 is eval-
uated. As previously mentioned in Section 6.1.1 the
computational complexity of the Direct method is
O

(
(Mbins − 1)

(
NC

f
2 + (NR

f − 2)NC
f

))
, while the complexity

Fig. 13. WiFi interface power consumption of IRTR and IntoNow algo-
rithms.

BISIO ET AL.: TELEVISION CHANNEL REAL-TIME DETECTOR USING SMARTPHONES 25

TABLE 6
Likelihood Estimation Computation Time and Related Gain,

NR
f = 3200, NC

f = 60

of the RC method proposed in this work is of the order of

O
(

(Mbins − 1) ·
(

3
2 · 2

⌈
log2 NR

f

⌉ ⌈
log2 NR

f

⌉
+ 2

⌈
log2 NR

f

⌉))

. In

the current IRTR configuration NC
f and NR

f are fixed values,
but, in future developments variable NC

f and NR
f may help

to further improve the performance. For example NC
f is pro-

portional to the duration of the audio recording acquired
by the smartphone. A variable recording length would lead
to a variable NC

f . NR
f is proportional to the length of the

audio of the monitored channels. In our work, as previously
said, the recognition takes into account the last 5 minutes
of each monitored channel, thus, leading to approximately
3200 RAF rows. In the best parameter setting, the record-
ing length is 6 seconds, consequently NC

f is approximately
60 rows. Table 6 shows the time required to compute the
likelihood estimation, ND

bit in (6) and L in (9), for the Direct
and RC methods respectively as well as the percentage gain
of RC with respect of the Direct method by using the setting
NR

f = 3200, NC
f = 60.

As said, NC
f and NR

f may be variable, therefore it is
important to show how the performance of the likelihood
estimation algorithm changes based on these values. Fig. 14
compares the values (Mbins − 1)

(
NC

f
2 + (NR

f − 2)NC
f

)
and

(Mbins − 1) ·
(

3
2 · 2

⌈
log2 NR

f

⌉ ⌈
log2 NR

f

⌉
+ 2

⌈
log2 NR

f

⌉)

related to

the theoretical complexity of the Direct and RC methods,
respectively, by fixing the NC

f value to 60 and by varying
NR

f . Fig. 15 shows the measured time required to compute
the likelihood estimation into the two cases (as done in
Table 6) again with NC

f = 60 and varying NR
f . The shown

time measurements are taken by using MatLab on a PC
running on a 32-bit Linux operating system and using an
Intel Xeon(R) CPU W3520 @ 2.67GHz × 4 processor with
3.9 GiB RAM memory. The shown values are the average
over 10 trials for each value of NR

f .
Figs. 16 and 17 show the same quantities of Figs. 14 and

15 but fixing NR
f = 3200 and varying NC

f .

Fig. 14. Likelihood theoretical complexity of RC and Direct method
versus RAF length.

Fig. 15. Measured time to compute the likelihood estimation for RC and
Direct methods versus RAF length.

It is clear that the proposed method is significantly less
complex than the Direct method. It is worth remarking that
if the fingerprint sent by the smartphone is taken from
a longer audio snippet RC computational time remains
unchanged because the RC complexity is independent of
NC

f . This will allow a future implementation of a flexible
recording policy,in which the client acquires audio snip-
pets of time-varying length without requiring any increase
of computational time. On one hand, while using shorter
fingerprints (or hash values) in the Direct Method leads
to shorter computational times on the server side, on the
other hand the proposed approach is not affected, always
as far as the computational time on the server side is con-
cerned, by the captured fingerprint size, as clearly shown
in Figs. 16 and 17. This represents, from the authors’ view-
point, one of the strengths of the proposal because the size
of the captured fingerprint also has a significant impact on
the recognition performance. At the same time it is also
true that a reduced fingerprint size implies a complexity
reduction on the client side, as shown in Section 7. As a
consequence, the employed size, i.e., the size of a possible
hash value, should be a compromise in terms of computa-
tional complexity and detection rate: the proposed method
can employ larger fingerprints, therefore increasing the
recognition accuracy, without affecting the computational
complexity of the matching phase (on the server side). In
practice, it is possible to improve the reliability of the IRTR
response without affecting its real-time functionality.

8 CONCLUSION AND FUTURE WORK

A full system, called IRTR, capable of detecting the TV
channel in real time through a short audio snippet has
been introduced. We have presented an improvement of

Fig. 16. Likelihood theoretical complexity of RC and Direct method
versus CAF length.

26 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 1, JANUARY 2015

Fig. 17. Measured time to compute the likelihood estimation for RC and
Direct methods versus CAF length.

the parameter configuration used by the Philips audio
fingerprint computation algorithm in order to reduce the
computational load and consequent energy consumption in
the smartphone client. Experimental results show a signifi-
cant computational time and power consumption reduction
of more than 90% with a limited decrease in recogni-
tion performance. The overall performance of the system,
with the selected settings, reaches a 95% correct decision
rate. A comparison with the existing commercial software
IntoNow has been carried out concerning energy efficiency
and computational speed. The performance of IRTR is
comparable to the IntoNow Best Case scenario. Moreover,
an efficient likelihood estimation method running on the
server and called RC (Reduced Complexity) has been pro-
posed. The RC method allows reducing the computational
complexity of the likelihood estimation of more than 20%
compared to the state of the art. The computational com-
plexity of RC has the peculiarity of being independent from
the length of the audio recorded by the smartphone, and
is therefore well suited for variable-recording-length archi-
tectures. Future improvements may derive from fingerprint
progressive sending and from the use of users’ individual
watch history to compute a priori probabilities and further
optimize the searching algorithm.

REFERENCES

[1] [Online]. Available: http://www.intonow.com/ci
[2] P. Mell and T. Grance, “The NIST definition of cloud computing

(draft) recommendations of the National Institute of Standards
and Technology,” Nist Special Pub., vol. 145, no. 6, pp. 1–7, 2011
[Online]. Available:
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-
145_cloud-definition.pdf

[3] [Online]. Available: http://www.tunerfish.com/
[4] [Online]. Available: http://gomiso.com/
[5] [Online]. Available: http://www.yap.tv/
[6] E. Talipov, Y. Chon, and H. Cha, “Content sharing over

smartphone-based delay-tolerant networks,” IEEE Trans. Mobile
Comput., vol. 12, no. 3, pp. 581–595, Jan. 2012.

[7] B. Han et al., “Mobile data offloading through opportunistic com-
munications and social participation,” IEEE Trans. Mobile Comput.,
vol. 11, no. 5, pp. 821–834, May 2012.

[8] E. Koukoumidis, M. Martonosi, and L.-S. Peh, “Leveraging smart-
phone cameras for collaborative road advisories,” IEEE Trans.
Mobile Comput., vol. 11, no. 5, pp. 707–723, May 2012.

[9] M. Dong and L. Zhong, “Chameleon: A color-adaptive web
browser for mobile OLED displays,” IEEE Trans. Mobile Comput.,
vol. 11, no. 5, pp. 724–738, May 2012.

[10] I. Bisio et al., “Opportunistic estimation of television audience
through smartphones,” in Proc. SPECTS, Genoa, Italy, Jul. 2012,
pp. 1–5.

[11] Yahoo and Nielsen. (2010). “Mobile shopping framework,
the role of mobile devices in shopping process,” Tech. Rep.
[Online]. Available: http://www.slideshare.net/ashmeed25/
mobileshoppingframeworkstudy2010whitepaper-final

[12] [Online]. Available: http://www.notube.tv/
[13] [Online]. Available: http://www.barb.co.uk/
[14] Ofcom. (2011). “Communications Market Report: U.K.,”

Tech. Rep. [Online]. Available: http://stakeholders.ofcom.org.
uk/binaries/research/cmr/cmr11/UK_CMR_2011_FINAL.pdf

[15] J. Haitsma and T. Kalker, “A highly robust audio fingerprint-
ing system with an efficient search strategy,” J. New Music
Res., vol. 32, no. 2, pp. 211–221, 2003 [Online]. Available:
http://dx.doi.org/10.1076/jnmr.32.2.211.16746

[16] L. Ghouti, A. Bouridane, and M. Ibrahim, “A fingerprinting sys-
tem for musical content,” in Proc. IEEE Int. Conf. Multimedia Expo.,
Toronto, ON, USA, Jul. 2006, pp. 1989–1992.

[17] C.-S. Lu, “Audio fingerprinting based on analyzing time-
frequency localization of signals,” in Proc. IEEE Workshop
Multimedia Signal Process., Dec. 2002, pp. 174–177.

[18] Y. Ke, D. Hoiem, and R. Sukthankar, “Computer vision for music
identification,” in Proc. IEEE CVPR , vol. 1. Washington, DC, USA,
Jun. 2005, pp. 597–604.

[19] S. Baluja and M. Covell, “Content fingerprinting using wavelets,”
in Proc. CVMP, London, U.K., Nov. 2006, pp. 198–207.

[20] P. Cano, E. Batle, T. Kalker, and J. Haitsma, “A review of
algorithms for audio fingerprinting,” in Proc. IEEE Workshop
Multimedia Signal Process., New York, NY, USA, Dec. 2002,
pp. 169–173.

[21] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 3rd ed.
Orlando, FL, USA: Academic, 2006.

[22] J. Lourens, “Detection and logging advertisements using its
sound,” IEEE Trans. Broadcast., vol. 36, no. 3, pp. 231–233,
Sep. 1990.

[23] F. Kurth, A. Ribbrock, and M. Clausen, “Identification of highly
distorted audio material for querying large scale data bases,”
in Proc. Audio Eng. Soc. Convention, 2002 [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=11325

[24] Y. Z. Qian, H. J. Dou, and Y. Feng, “A novel algorithm for audio
information retrieval based on audio fingerprint,” in Proc. ICINA,
vol. 1. Kunming, China, Oct. 2010, pp. V1–266 –V1–270.

[25] J. Cerquides, “A real time audio fingerprinting system for
advertisement tracking and reporting in FM radio,” in Proc.
17th Radioelektronika Int. Conf., Brno, Czech Republic, Apr. 2007,
pp. 1–4.

[26] D. Mukherjee, T. Chattopadhyay, S. Bhattacharya, A. Ghose,
and P. Misra, “An architecture for real time television audi-
ence measurement,” in Proc. IEEE ISCI, Kuala Lumpur, Malaysia,
Mar. 2011, pp. 611–616.

[27] T. L. Blum, D. F. Keislar, J. A. Wheaton, and E. H. Wold, “Method
and article of manufacture for contentbased analysis, storage,
retrieval, and segmentation of audio information,” U.S. Patent
No. 5 918 223, Jun. 1999.

[28] P. Cano, E. Batlle, H. Mayer, and H. Neuschmied, “Robust sound
modeling for song detection in broadcast audio,” in Proc. AES
112th Int. Conf., 2002, pp. 1–7.

[29] E. Allamanche, “Content-based identification of audio material
using MPEG-7 low level description,” in Proc. ISMIR, 2001.

[30] J. Seo et al., “Audio fingerprinting based on normalized spec-
tral subband centroids,” in Proc. ICASSP, vol. 3. Mar. 2005,
pp. 213–216.

[31] A. L. Wang, “An industrial-strength audio search
algorithm,” in Proc. 4th ISMIR, S. Choudhury and
S. Manus, Eds. Int. Soc. Music Inf. Retrieval. Oct. 2003,
pp. 7–13 [Online]. Available: http://www.ismir.net: ISMIR;
http://www.ee.columbia.edu/˜dpwe/papers/Wang03-shazam.
pdf

[32] M. R. Jim Barton. Tivo Official Website [Online]. Available:
http://www.tivo.com

[33] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, NJ, USA: Prentice–Hall, 1975.

[34] H. Fastl and E. Zwicker, Psychoacoustics: Facts and Models. New
York, NY, USA: Springer, 2006.

[35] K. M. Miettinen, Nonlinear Multiobjective Optimization. Boston,
MA, USA: Kluwer Academic, 1998.

[36] (2011, Oct.). Auditel, Sintesi Mensile 1A (in Italian) [Online].
Available: http://www.auditel.it/dati/

BISIO ET AL.: TELEVISION CHANNEL REAL-TIME DETECTOR USING SMARTPHONES 27

[37] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for nor-
mality with mean and variance unknown,” J. Amer. Statist.
Assoc., vol. 62, no. 318, pp. 399–402, 1967 [Online]. Available:
http://www.jstor.org/stable/2283970

[38] L. Zhang et al., “Accurate online power estimation and auto-
matic battery behavior based power model generation for smart-
phones,” in Proc. IEEE/ACM/IFIP CODES+ISSS, New York, NY,
USA, Oct. 2010, pp. 105–114.

Igor Bisio (S’04-M’08) received the Laurea and
PhD degrees in Telecommunication Engineering
from the University of Genoa, Italy, in 2002
and 2006, respectively. He is currently an
Assistant Professor and he is a member of the
Digital Signal Processing (DSP) and Satellite
Communications and Networking (SCNL)
Laboratories at the University of Genoa. His
current research interests include resource allo-
cation and management for satellite and space
communication systems, signal processing over

smartphones. He is a member of the IEEE.

Alessandro Delfino received the B.Sc degree
in Telecommunication Engineering in 2007 and
the M.Sc degree, also in Telecommunication
Engineering, in 2010, with a thesis on Audio
Fingerprinting, both from the University of
Genoa. In 2010, he worked on MAC protocols
for Cognitive Radio at European funded Joint
Research Center (JRC) of Ispra, Italy. He is cur-
rently a PhD student at the University of Genoa,
and his current research interests include
audio fingerprinting and audio information
retrieval and cognitive radio.

Fabio Lavagetto is currently a full professor in
Telecommunications at the DITEN Department
of the University of Genoa. Since 2008, he
has been Vice-Chancellor with responsibility
for Research and Technology Transfer at the
University of Genoa. Since 2005, he has been
Vice-Chair of the Institute for Advanced Studies
in Information Technology and Communication.
Since 1995, he has been the head of research
of the Digital Signal Processing Laboratory of
the University of Genoa. He was General Chair

of several international scientific conferences and has authored over
100 scientific publications in international journals and conferences.

Mario Marchese (S’94-M’97-SM’04) received
the Laurea degree (cum laude) in electronic
engineering and PhD degree in telecommuni-
cations from the University of Genoa, Genoa,
Italy, in 1992 and 1996, respectively. He is cur-
rently an Associate Professor with the DITEN
Department, University of Genoa. His current
research interests include satellite and radio net-
works, transport layer over satellite and wireless
networks, quality of service and data transport
over heterogeneous networks, and applications
for smartphones.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

