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Discrete Stochastic Programming by Infinitesimal Perturbation Analysis:
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Abstract— This paper deals with a NP-Hard resource allocation
problem for a satellite network. An approach based on the
estimation of the gradient of a cost function, obtained through
a ”relaxed continuous extension” of the discrete constraint set, is
proposed. Since neither closed forms of the performance measure,
nor additional feedbacks on the statistical properties of the
traffic sources are requested, the proposed approach reveals to
be suitable for optimizing the resource allocation in real life
case studies, where the application of specific certainty equivalent
assumptions is impractical.

Index Terms— Satellite networks, resource allocation, fade
countermeasures, gradient estimation.

I. INTRODUCTION

IN satellite networks, dynamically varying fading conditions
over the channel can heavily affect the transmission quality,

especially when working in Ka band (between 20 and 30
GHz), where the effect of rain fading is more significant.
In the literature, it is possible to find optimal transmission
policies, developed in the case of energy constraints for
satellite network devices. The problem is usually analyzed and
solved at the physical layer. Power allocation is performed, in
order to obtain good reactions to variable fading conditions.
Reference [1] shows a dynamic programming formulation
of the problem that leads, for special cases, to a closed-
form optimal policy. The latter finds a tradeoff between the
minimization of the energy required to send a fixed amount
of data and the maximization of the throughput over a fading
channel. Other approaches need to locate the control system at
both the physical and data link (or upper) layers, and provide
adaptive bandwidth allocation strategies [2, 3]. In this case, the
control systems are often based on closed-form expressions for
the performance measure. For example, in [2], the Tsybakov-
Georganas formula [4] for the cell loss probability in the
presence of self-similar traffic is used. The main drawback
of these approaches is due to the fact that conditions for
the applicability of such closed-form expressions are difficult
to implement in real-life contexts. In particular, the mapping
between the current statistical behaviour of the system and
the model parameters must be constantly updated, to maintain
a good performance of the allocation algorithm. Many of
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Fig. 1. The model of the ith satellite station.

the adopted techniques need also the application of Dynamic
Programming, whose on-line implementation (needed for con-
trol adaptation) may become quite impractical, due to the
well-known curse of dimensionality problem. In this work,
we present a novel solution for the bandwidth allocation in
a satellite environment, based on Infinitesimal Perturbation
Analysis (IPA) [5] and on a surrogate relaxation of a dis-
crete cost function [6,7]. IPA is suitable for the optimization
problem under investigation, since it allows us to formulate
a control scheme that is light (i.e., polynomial in the state
space), adaptive (i.e., able to learn the statistical changes of
the system) and non-parametric (i.e., able to optimize the
system performance without any closed-form expression of
the performance measure). The paper is organized as follows.
In the next Section we formulate the discrete stochastic opti-
mization problem for resource allocation in a satellite network
with fading. Then, in Section III, we address our optimization
approach and we test its performance by simulation analysis
in Section IV. Finally, in Section V, we conclude the paper
and discuss future work.

II. THE OPTIMIZATION PROBLEM

We consider a given number of earth stations, sharing a
common satellite link. Each station i has a finite-capacity
buffer of fixed size ci and a single server with service rate
θi(t), t being the (continuous) time variable. The stochastic
processes associated with this model and useful for our
optimization approach are: the input flow of the buffer αi(t);
the output flow rate δi(t) (δi(t) = θi(t), if the buffer is not
empty; δi(t) = αi(t), if αi(t) < θi(t), or δi(t) = θi(t), if
αi(t) ≥ θi(t), otherwise); the loss rate process due to a full
buffer γi[θi(t), t] (Fig. 1).

Even if the optimization technique we are going to investi-
gate is not related to a specific behaviour of the traffic sources,
we now introduce the traffic model employed in the following
simulation results. In the last years, it has been demonstrated
that packet-based traffic shows statistical characteristics very
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close to “self-similar” processes [8]. We suppose that each in-
put process αi(t) is a self-similar stochastic process, generated
by the superposition of some variable bit rate sources. For each
station i, the statistical parameters that describe such process
are: the peak bit rate of the on-off sources and the burst
arrival rate λiburst = Mi

τi+σi
of the aggregated flow (namely,

the average burst frequency “seen” by station i). τi and σi are
the mean time durations of the burst and of the silence periods,
respectively; these periods are both Pareto distributed, in order
to guarantee asymptotic self-similarity of the flows [8]. Mi is
the number of on-off sources in the flow αi(t). Our aim is to
counteract variable fading levels and traffic load conditions.
The stochastic processes involved with fading are assumed to
be non-stationary. Therefore, the optimization algorithm has
to dynamically adjust the bandwidth allocation, by adaptively
following the current behaviour of the stochastic processes
and by distributing the available channel capacity among the
traffic stations. For each station i, the performance measure
of interest is the Loss Volume Li over the interval [0, T ]:
Li =

∫ T
0 γi[θi(t), t] dt. The satellite capacity serves N earth

stations. The overall Loss Volume of the overall system is the
sum of the contributions of each station, i.e.:

L =

{
N∑
i=1

∫ T

0

γi[θi(t), t] dt

}
. (1)

If θd(t) = [θd1(t), ..., θdN (t)] is the vector of the (discrete)
service capacities allocated to each station at time t (from
here on, we shall use the superscript d to stress that a quantity
belongs to a “discrete set”), we have θd(t) ∈ Θd, with:

Θd =
{
θd(t) ∈ �N : θdi (t) = hi(t) ·MAU

}
, (2)

and
N∑
i=1

θdi (t) = K (3)

where hi(t) ∈ � and K is the total service capacity available
for the satellite system. The allocated service rate for each
station is a discrete number of “Minimum Allocation Units”
(MAUs), i.e., the smallest portion of bandwidth that can be
assigned to a station. The effect of fading is modeled as a
reduction in the bandwidth actually “seen” by an earth station.
The fading effect is represented by a variable φi(t), which
shows how the bandwidth θdi (t) is reduced. For each station i,
at time t, the “real” θi(t) is θi(t) = φi(t)·θdi (t); φi(t) ∈ [0, 1];
i = 1, ..., N . The reduction of the bandwidth actually seen by
the station is due to the increase in the redundancy required
to maintain a fixed Bit Error Rate (BER). We suppose the
presence of fading reactions located at the physical layer and
managed by each earth station, in order to provide the de-
sired BER, by adopting appropriate Forward Error Correction
(FEC) codes (see, e.g., [2, 3] and references therein). The
problem is to find the optimal bandwidth allocation function,
Optθd(t), such that the overall loss volume of the satellite
system is minimized:

Optθd(t) = arg min
θd(t)∈Θd, ∀t>0

J [θd(t)]; (4)

J [θd(t)] = E{L(θd(t))}; (5)

E{L(θd(t))} = E

{
N∑
i=1

∫ T

0

γi[φi(t) · θdi (t), t] dt
}
. (6)

We denote by ωi the generic sample path for station i, namely,
a realization of the stochastic processes that characterize the
temporal evolution of station i: αi(t), φi(t), i = 1, ..., N . The
expectation is over all the feasible sample paths for each
station i. The minimization in Eqs. (4)-(6) expresses a NP-
hard discrete stochastic programming problem. Following the
theoretical framework of [6,7], we address a new optimization
algorithm. The idea is to exploit the current level of conges-
tion in each station through IPA, during a time interval of
observation (i.e., a decision epoch). Then, a new reallocation
is performed at the end of each decision epoch through a
gradient descent step.

III. THE ON-LINE SURROGATE OPTIMIZATION

ALGORITHM

To perform the above-described procedure, we need the
gradient of the cost function L with respect to the bandwidth
allocation. With such a gradient, we can apply an on-line opti-
mization descent, capable to optimally distribute the available
channel capacity among the stations. From here on, we con-
sider the service rate θdi (t) as a piecewise constant function,
driven by the reallocation mechanism. A new reallocation is
performed at the end of a decision epoch. Within the κ-th
decision epoch, the service rate is constant and it is denoted
by θd(κ). As regards the gradient computation, the reader
is referred to [5], where an IPA technique is investigated to
compute derivative estimators for a traffic buffer as a function
of the sample paths ωi, i = 1, ..., N, of the system. No specific
certainty equivalent assumptions are necessary for the system
under investigation. The discrete constraint set Θd is “relaxed”
into a continuous one Θc [6,7]:

θc ∈ Θc,Θc =

{
θci ∈ �+;

N∑
i=1

θci = K

}
(7)

Then, letting t̂ be the delay latency of the satellite system,
each station i, for every t = κt̂, κ = 1, 2, ..., must:

1) observe the buffer temporal evolution during the time interval
[(κ − 1)t̂, κt̂], according to the current sample path ωi and
bandwidth allocation θd

i (κ− 1), θd(κ− 1) ∈ Θd;

2) compute the gradient estimation
∂Li(θi)

∂θi

∣∣∣
θi(κ−1)

, according

to Infinitesimal Perturbation Analysis [5] (we now indicate
explicitly the dependence of Li on θi(κ) for the duration of
the κ-th decision epoch);

3) adjust the value of its “bandwidth need”, by using the gradient
method:

θ
�c

i (κ) = θ
�c

i (κ− 1)− η · φi · ∂Li(θi)

∂θi

∣∣∣∣
θi(κ−1)

(8)

4) communicate the bandwidth need θ
�c

i (κ) to the master station;

5) (for each station i that has the role of master station) by
looking at the information received from the other stations
(i.e., θ

�c
j(κ− 1), j = 1, ..., N , j �= i), and on the basis of the

local bandwidth need θ
�c

i (κ − 1), obtain θc(κ − 1) through
θc(κ − 1) = Π[θ

�c(κ − 1)] (Π[θ̃] = arg min
θ′∈Θc

‖θ̃ − θ′‖ is
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a projection operator) and convert θc(κ − 1) to the nearest
discrete feasible neighbor θd(κ), so that θd(κ) ∈ Θd; such
conversion defines the bandwidth allocation for the satellite
system in the time interval [κt̂, (κ+ 1)t̂].

The derivative estimation is computed as (see [5]):

∂Li(θi)
∂θi

∣∣∣∣
θi(κ)

=
Nκi∑
k=1

∂Lki (θi)
∂θi

∣∣∣∣
θi(κ)

(9)

∂Lki (θi)
∂θi

∣∣∣∣
θi(κ)

= − [νκk (θi(κ)) − ξκk ], (10)

where Lki (θi) is the contribution to the loss volume of the k-th
active periodBκk of the buffer within the decision epoch [κ, κ+
1], ξκk is the starting point of Bκk , νκk is the instant of time
when the last loss occurs during Bκk , and Nκ

i is the number of
active periods at station i within the decision epoch [κ, κ+1].

The above procedure stems from the usage of
∂Li(θi)
∂θi

∣∣∣∣
θi(κ)

,

which is the measurable quantity derived from IPA. Actually,
we are trying to approximate the gradient with respect to θci ,
which would require the application of Perturbation Analysis
on the discrete parameter set, as in [6,7]. However, since we
are considering a service rate, which can admit infinitesimal
perturbations, whose effect is evaluated from the sample path,
we have chosen to apply IPA and to perform what would be
a descent step on the loss function without discretization. In
step 4, as is shown in [6], the “nearest” feasible neighbor
θd(κ + 1) ∈ Θd of θc(κ + 1) ∈ Θc can be determined,
by using an O(N + 1) algorithm (see, e.g., [7] for further
details). The latter is based on the N + 1 discrete neighbours
of θc(κ + 1) ∈ Θc, not necessarily all feasible, and on the
selection of one of them, which satisfies the discrete constraint
set Θd. The technical conditions necessary for the conver-
gence of the employed stochastic gradient-based algorithm
are related to the “unbiasedness” and “consistency” of the IPA
gradient estimator within each decision epoch. Hence, we must
assume that the stochastic processes are stationary and ergodic
within each observation interval [κ, κ + 1]. Otherwise, the
obtained sensitivity estimation would capture measures related
to a non stationary stochastic environment, thus affecting the
convergence of the gradient descent. The other conditions,
related to the convergence of the algorithm, are: a decreasing
behaviour of the gradient stepsize, the existence of a global
(rather than local) optimum of the cost function (6) and the
boundedness of the IPA estimator in the surrogate domain
Θc. It is easily provable that such conditions hold true for
the optimization framework under investigation. However, it is
necessary to assume that the time-scale of the fading changes
be lower than the time required for the convergence of the
proposed control scheme. Otherwise, the resulting allocations
would be only suboptimal. As we show in the following, this
depends on the chosen gradient stepsize.
We now briefly summarize the allocation strategies employed
in the following simulation results.
Just IPA: during the network’s lifetime, the IPA technique
described previously is adopted, and derivative estimations are
computed. After that, the aforementioned gradient algorithm is
applied. No feedback about the state of the system, in terms of
traffic load, is necessary to apply such optimization procedure.

In the simulation results, a bound on the optimal stepsize as
a function of the channel capacity will be provided.
Proportional: if either a perfect off-line knowledge of the
temporal behaviour of the stochastic processes of the system
or a perfect and fast on-line feedback over the system’s state is
available, it is possible to apply a good heuristic, in order to get
a good approximation of the optimal solution with a minimal
computational burden. In the hypothesis that the earth stations
are affected by the same fading level, let:

tθci = K ·
(

1 − bi
bTot

)
, bTot =

N∑
h=1

bh, i = 1, ..., N (11)

be the component of the proportional bandwidth allocation,
with respect to the traffic load changes, where (for i =
1, ..., N ):

bi =
τ i + σi
τ i

=
single source′s Peak rate
single source′s Mean rate

(12)

is the burstiness of station i, a statistical property of the
traffic load at station i. A good heuristic allocates more
bandwidth to the stations where the sources have smaller levels
of burstiness. A similar proportional allocation can be applied
in the presence of fading level changes. In case that no traffic
changes take place, let:

fθci = K ·
(

1 − φi
φTot

)
, φTot =

N∑
h=1

φh, i = 1, ..., N (13)

be the component of the proportional bandwidth allocation
with respect to fading level changes only. Namely, the avail-
able bandwidth is proportionally distributed, in order to “pro-
tect” the stations that are receiving the highest channel degra-
dations. Then, at each reallocation time κ, for each station i,
the proportional strategy computes its current bandwidth need
as:

θci = K ·
tθci (κ− 1) +f θci (κ− 1)

N∑
i=1

[tθci (κ− 1) +f θci (κ− 1)]
, i = 1, ..., N (14)

As in the Just IPA procedure, each station i transmits its θci (κ−
1) to the other stations and, at time κ, θci (κ− 1) is converted
to the discrete feasible neighbor θdi ∈ Θd, with the algorithm
employed at step 4 of the Just IPA technique. Note that the
proportional strategy needs to maintain a perfect knowledge
about both the burstiness of the traffic sources and the fading
levels.

IV. SIMULATION RESULTS

To test the proposed strategies, we developed a C++ simu-
lator for the queues of the satellite network. The performance
of interest is the averaged sum of the Loss Probabilities (LPs)
of each station at the end of the simulation. The following
loss measures are averaged over 25 independent replications
of the simulation scenario, to meet a confidence interval less
than 1% of the estimated loss value for 95% of the cases. We
first consider a scenario with 2 stations, in which traffic load
changes are added to those of fading levels. Then, we further
compare the proposed strategies, by scaling up the number
of stations. As in [2], the traffic pattern follows a self-similar
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TABLE I

TRAFFIC CHANGES

Time Interval [min] 0.0-14.0 14.0-38.0 38.0-60.0

Station1, bursts/s 7.5 3.75 7.5

Station2, bursts/s 3.75 7.5 3.75

Fig. 2. Fading class changes: bandwidth reduction factor at Station 1.

behaviour, summarized in Section II. The employed fading
processes come from [2], where real-life fading attenuation
samples are taken from a data set, chosen from the results
of experiments, in Ka band, carried out on the Olympus
satellite by the CSTS (Centro Studi sulle Telecomunicazioni
Spaziali) Institute, on behalf of the Italian Space Agency. The
Carrier/Noise Power (C/N0) ratio is monitored at each station
and, on the basis of its values, different bit and coding rates are
applied, in order to limit the BER below a chosen threshold of
10−7. Six different fading classes are defined, corresponding
to combinations of channel bit rate and coding rate. This gives
rise to corresponding bandwidth reduction factors φi(t). With
the data adopted in [2] we have (for i = 1, 2):

φi(t) ∈ {0.0, 0.15625, 0.3125, 0.625, 0.8333, 1.0} . (15)

The value φi(t) = 0 corresponds to an outage condition; the
value φi(t) = 1 corresponds to clear sky. T is fixed to 1
hour and the fading effect does not affect Station 2, while it
significantly deteriorates the quality of the channel for Station
1, as shown in Fig. 2. Only the IPA estimator is used to drive
the gradient descent (8), disregarding the fading value (i.e.,
φi(t) is assumed to be 1 in (8)). The optimization procedure
is capable to tune the bandwidth allocations in dependence
of the working conditions, even without any knowledge on
the redundancy applied at the physical level. This was also
validated by other simulations, not reported in the paper.
Traffic changes are defined in Table I and consider time-
varying burst arrival rate conditions.

The highest burst arrival rate (7.5 bursts/s) is obtained
with Mi=15, τ i=1.0, σi=1.0, i = 1, 2. The lowest one (3.75
bursts/s) with Mi=15, τ i=1.0, σi=3.0, i = 1, 2. Each station
is provided with a buffer of 100 ATM cells, the total capacity
of the system is fixed to 18.0 Mbps and each source is
supposed to transmit at a peak bit rate of 1.0 Mbps. The
MAU size is fixed at 100 kbps (correspondingly, K=180), the
reallocation period is 1.0 second, and the gradient stepsize
is ηκ = [(5 · 106) − κ · (200 · 103)]. The fading peaks affect

Fig. 3. Traffic load and real fading level changes. Just IPA allocation.

Fig. 4. Traffic load and real fading level changes. Proportional allocation.

Station 1 during its period of low traffic load; so, the proposed
optimization strategies have to find out a good tradeoff in
the bandwidth allocation with respect to both traffic load and
fading changes.

As is shown in Fig. 3 and Fig. 4 (where the allocations
corresponding to a specific realization are reported), both the
Just IPA and the Proportional strategies are capable to change
the resource allocation with respect to the variable system
conditions. Just IPA guarantees a more balanced partition of
resources with respect to the proportional assignment (the
steady states in the bandwidth allocation for the station in high
traffic load are around 11.0 Mbps for Just IPA and 12.0 Mbps
for the Proportional technique). This slightly affects the system
performance: the average LP assured by Just IPA is 1.15·10−2

while the Proportional strategy guarantees an average LP
of 1.38 · 10−2. If a perfect knowledge about the statistical
properties of the traffic sources is available (Proportional
strategy), an on-line proportional assignment with respect to
the traffic load and the fading levels could allow guaranteeing
good performance. Clearly, a perfect knowledge about the
statistical properties of the traffic sources is difficult to assure,
in real-life contexts. For this reason, the adoption of adaptive
resource allocation algorithms, like the Just IPA proposed here,
reveals to be more suitable to optimize the performance.

Fig. 5 represents the percentage performance improvement
obtained by the Just IPA technique over the Proportional
strategy, by increasing both the number of stations and the
channel capacity (from 80.0 Mbps with 3 stations to 270
Mbps with 10 stations), to assure a LP level around 1.0 ·10−2.
Variable traffic conditions are taken into account as in Table I,
disregarding the fading effect. The best gradient stepsize has
been found out by simulation inspection as function of the
channel capacity. It is about 8% of the value of the available
bandwidth for up to 5 stations and about 4%, when the number
of stations is between 6 and 10. The obtained bandwidth
allocations are similar to the ones depicted in Fig. 2 and Fig.
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Fig. 5. Traffic changes and scaling up the number of stations in the system.

3. As shown in Fig. 4, even without any knowledge on both
the fading and the traffic processes, Just IPA outperforms the
Proportional allocation, when the number of stations increases.
A comparison between Just IPA and a parameter adaptive
certainty equivalent control (which makes use of a closed
form expression of the LP performance measure) is reported
in [9]. Even in this case, the application of IPA assures the
best performance.

V. CONCLUSIONS AND FUTURE WORK

The application of the optimization methodology introduced
in [6,7] has been proposed to react to fading and traffic
load changes over a satellite network. It computes sensitivity
estimations based only on the sample paths of the system and
it reveals to be a promising technique, able to react in real

operating conditions. Future work can include the application
of the employed sensitivity estimation technique, in order to
solve resource allocation problems for other important QoS
parameters, such as delay and delay jitter, and for different
application scenarios.
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