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Abstract—The task of a capacity allocation policy is to deter-
mine the optimal quantity of capacity that has to be shared
among the transmitting entities. In this work the allocation
problem is modelled by the Multi Objective Programming (MOP)
theory. In particular, an allocation criterion based on the Lp-
problem is proposed to find out a capacity allocation, among
Earth Stations, representative of a compromise if Packet Loss
Probability and Transmitted Power are taken into account as
performance metrics. The paper also discusses the existence
of a capacity allocation, called Capacity Bound, on which the
performance converges independently of the overall capacity
available CTOT . A performance analysis, carried out through
simulations and under different satellite channel conditions, is fi-
nally proposed to investigate the allocation criterion performance
and to show the Capacity Bound existence.

Index Terms—Satellite Communications, Multi-Objective Pro-
gramming, Lp-problem based Allocation, Capacity Bound, Per-
formance Analysis.

I. INTRODUCTION

THIS paper defines capacity allocation as a competitive
problem where each entity (i.e., Earth Station) accessing

the shared available capacity is “represented” by a group of
functions called objective functions. Each of them needs to
be optimised at cost of the others. These functions model
physical quantities, such as Packet Loss Probability (PLP) and
Transmitted Power (TP), as a function of the capacity allocated
to the entity. If the functions are in contrast each other the
allocation must represent necessarily a compromise. Modelling
capacity allocation as described allows using Multi-Objective
Programming (MOP) theory, which defines the multi-objective
optimisation problem and the set of Pareto Optimal Points
(POPs) as introduced in [1]. Each POP is often referred to
a vector analogue for optimal solutions because the optimal
solution for MOP is not formally defined. Optimal capacity
allocations are chosen among POPs. Even if each POP is
optimal from the Pareto viewpoint, to choose one solution is
needed. A possibility, used in this paper, is the compromise
solution [2], that selects a single POP minimising the distance,
in the sense of the Lp-problem [3], with a reference goal
point. In this paper, the solutions of the Lp-problem has
been evaluated by applying several weights combinations as
well as different norms to investigate several compromises
among the adopted metrics: PLP and TP. Moreover, starting
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from the definition of Lp-problem and considering the specific
analytical formulae of the objective functions adopted in this
paper, explicitly reported in Section IV, the existence of a
Capacity Bound has been formally and experimentally proven.
In more detail, under the considered conditions, the Lp-
problem provides the same solution (i.e., the allocation among
entities does not change) even if the overall available capacity
CTOT tends to infinity. It means that the system performance
does not change even if the resource availability, in terms
of capacity expressed in [bps], significantly grows. Given a
certain CTOT and a given number of Earth Stations, the
result allows considering the possibility to save capacity for
other possible entities without performance detriment. The
rest of the paper is organised as follows. The next section
presents a brief survey of the state of the art about resources
allocation for satellite and wireless communications systems.
In Section III the MOP mathematical framework, used in
this paper, is revised and the allocation criterion, modelled
as the Lp-problem, are presented. Section IV describes the
analytical formulae employed as performance metrics in this
work: PLP and TP. Section V shows that the compromise
solution is independent of the overall available capacity CTOT ,
if it significantly grows, by demonstrating the existence of
the Capacity Bound under the considered conditions in this
paper. Section VI presents the simulation results that confirm
the existence of the mentioned Capacity Bound analytically
found. Finally the Conclusions are drawn.

II. BRIEF SURVEY OF THE STATE OF THE ART

Since the last decade resources allocation for satellite and
wireless communications systems is widely investigated. The
most important resource considered by allocation algorithms
is the capacity available, expressed in [bps], for data trans-
missions. The task of allocation algorithms concerned the
maximisation of the capacity dedicated to each entity sharing
the resource (i.e., the Earth Stations in this paper) aimed at im-
proving the quality of communications. Recently, algorithms
that consider capacity allocation and TP, simultaneously, have
been introduced. In general, the algorithms available in the
literature can be divided in two families. The first family
concerns the capacity maximization (in [bps]), provided to
the overall communications system (i.e., to all entities) by
allocating to each entity a certain quantity of bandwidth,
expressed in [Hz], and the power, in [W], useful to carry out
the communication process. The total amount of bandwidth
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and power assigned to the entities are constrained and the
capacity is modelled as a function of bandwidth and power
consumption according to the Hartley Shannon law. This
approach can be found in [4] and [5]. The second family
deals with the transmission power minimisation by allocating
bandwidth (in [Hz]), and capacity (in [bps]). The TP by each
entity, is analytically obtained by the Hartley Shannon Law. In
such an approach the capacity is considered constrained over
a given threshold to assure a certain level of communications
quality. This approach can be found in [6] and in [7].
The main difference between the method in this paper, based
on the MOP theory and similarly presented in [1], and the
families above surveyed concerns the optimisation criterion
used for the resource allocation. In more detail, our proposal
tries to optimise the value of two (or more) metrics, simul-
taneously. The proposed MOP-based approach considers a
single constrained control vector, the capacity allocated to each
entity, and is explicitly aimed at optimising the Transmitted
Power and a quality of service metric (the Packet Loss
Probability in the case of this work), at the same time. On the
contrary, the approaches found in the literature try to optimise
a single metric (i.e., only one objective function), the capacity
or the Transmitted Power, without explicit reference to quality
of service parameters as done in this paper. Moreover, the pro-
posed formulation allows showing the existence of a Capacity
Bound that fixes the overall system performance and avoids
possible capacity wasting.

III. THE Lp-problem BASED ALLOCATION

The model proposed in this paper is an extension of the
proposals in [8], in [9] and [1] and is based on three main
components: physical entities, virtual entities, and objective
functions. [8] introduces the capacity allocation based on
physical entities and objective functions; [9] opens the door
to the concept of virtual entity by using more than one buffer
for physical entity even if the term “virtual entity” is never
mentioned. The main differences, introduced by this work,
are the generalisation of the norm-based allocation method
to find the POP compromise solution as suggested in [2],
and, in particular, the proof of the existence of a Capacity
Bound, under the considered conditions of this paper, detailed
in Section V. As defined in [1], a physical entity is a device
such as a satellite Earth Station. A virtual entity is a component
within a physical device such as a single buffer-server. Each
virtual entity is “represented” by a group of objective functions
that model performance parameters such as, for instance, PLP
and TP. Capacity allocations are performed by a centralised
decision maker, which split CTOT among all physical entities
and assigned portions of capacity to virtual entities in depen-
dence on the objective functions value.
In this section the capacity allocation problem is modelled

as a MOP Problem previously formalised in [1] and here
reported for the sake of completeness. The system is composed
by Z physical entities; each physical entity is identified by
z ∈ [1, Z]. Yz is the number of virtual entities of the z − th

physical entity. Each virtual entity is identified by yz ∈ [1, Yz].
Myz

is the number of objective functions for each virtual entity
yz . Each objective function, of a given yz − th virtual entity,

is identified by the index m ∈ [1,Myz
]. Cyz

is the capacity
allocated to the virtual entity y of the physical entity z.

(1)C = (C11 , C21 , C31 , ..., CY1
, ..., C1Z , C2Z , C3Z , ..., CYZ

)

is the vector that contains the capacity allocated to each

virtual entity. Cz =

Yz�

y=1

Cyz
is the capacity allocated to

physical entity z. Fm,yz
(C) is the m− th objective function,

analytically defined in Section IV, of the y− th virtual entity
of the z−th physical entity. The full set of objective functions
is contained in the vector

F(C) = (F1,11(C), ...

FM11
,11(C), ..., F1,YZ

(C), ..., FMYZ
,YZ

(C))
(2)

Given the definitions above and given CTOT the available
physical capacity, shared by all Z entities, the following
constraint must hold:

Z�

z=1

Yz�

y=1

Cyz
≤ CTOT (3)

Capacity allocation is defined as a MOP problem through (4),
which must be solved under the constraint (3) that defines the
feasibility region.

Copt =
�
C11,opt, C21,opt, .., CY1,opt, ..,

C1Z ,opt, C2Z ,opt, .., CYZ ,opt

�
= argmin

C
F(C);

Cyz
≥ 0, ∀yz ∈ [1, Yz].∀z ∈ [1, Z]

(4)

The set of solutions deriving from (4) is called POP set. In
general, getting the overall POP set is not simple but the struc-
ture of the objective functions helps to take decision in some
cases. For example, it is simple to prove that given the problem
(4), subject to the constraint (3), if all objective functions are
strongly decreasing [3], i.e. decreasing for all its variables and
strictly decreasing for at least one function and one variable,
then a solution C is a POP if and only if the solution is on

the constraint boundary
Z�

z=1

Yz�

y=1

Cyz
= CTOT . This is the

case we have considered in [8] and [9]. It is also true that,
given inequality constraint (3), if all objective functions are
decreasing, all the points on the constraint boundary are POP
solutions, but not all POP solutions necessarily belong to the

constraint and also points for which

Z�

z=1

Yz�

y=1

Cyz
< CTOT can

be POP solutions. The strongly decreasing assumption con-
cerning the objective-function vector is quite typical because
common performance functions applied in telecommunication
networks such as Packet Loss Probability, Packet Delay and
Packet Jitter are quantities that decrease their values when the
allocated capacity value increases. This is not true if also other
important metrics are used: power, but also processing and
computation effort. It is simple to prove that, given problem
(4) and constraint (3), if at least one function is strongly
increasing, i.e. increasing for all its variables and strictly
increasing for at least one variable, all the points inside the
feasibility region as well on the constraint boundary may be
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POP. The idea is to allocate capacity so that the value of each
objective function is as close as possible to its ideal value. The
set of ideal capacities (i.e. the ideal vector (5)) composed of the

ideal decision variable vector elements C
Fk,yz

yz,id
for which Fk,yz

attains the optimum value, may be known having information
about the features of the objective functions, as explained in
the following. This definition of the ideal capacities set is not
the only choice, e.g., if hard constraints on metrics were given,
the ideal vector may contain the minimum capacity allocations
so to assure these constraints.

C
Fk,yz

id =
�
C

Fk,yz

11,id
, C

Fk,yz

21,id
, ..., C

Fk,yz

Y1,id
, ...,

C
Fk,yz

1Z ,id , C
Fk,yz

2Z ,id , ..., C
Fk,yz

YZ ,id

�

∀k ∈ [1,Myz
], ∀yz ∈ [1, Yz], ∀z ∈ [1, Z]

(5)

Each element C
Fk,yz

yz,id
can assume a value between 0 and

CTOT , independently of any physical constraint and of the
values of the other components of vector (5). It is called
ideal (utopian) for this. For example, if a generic objective
function is decreasing versus capacity, it is obvious that it is
ideal allocating all the possible capacity CTOT , while if it is
increasing versus capacity, it is ideal allocating no capacity
at all. The values of vector (5) are considered known in the
remainder of the paper. Vector in (6) contains each objective
function attaining its ideal value.

Fid =

�

F1,11,id

�
C

F1,11

id

�
, .., Fk,yz ,id

�
C

Fk,yz

id

�
, ..,

FMYZ
,YZ,id

�
C

FMYZ
,YZ

id

�� (6)

The allocated optimal capacity based on the proposed
criterion is reported in (7).

Call = (C11,all, C21,all, ..., CY1,all, ..., C1Z ,all, C2Z ,all, ...,

CYZ ,all) = arg min
C⊂Copt

Jp(C)

(7)

where

Jp(C) =

�
Z�

z=1

Yz�

y=1

Myz�

k=1

wk,yz

�
�
�
�Fk,yz

(CFk,yz )−

+ Fk,yz ,id

�
C

Fk,yz

id

���
�
�

p
�1/p

(8)

and

Myz�

k=1

wk,yz
= 1, wk,yz

≥ 0, ∀k ∈ [1,Myz
], ∀yz ∈

[1, Yz], ∀z ∈ [1, Z] so to assure the Pareto optimality of the
solution as indicated in reference [3], page 98.
As extensively described in [2], the summation arguments in

(8) can be considered in two ways: i) as transformations of the
original objective functions; ii) as components of a distance
function that minimizes the distance between the solution point

and the ideal value, also called utopia point, in the criterion
space. In practice, in this paper we minimise the distance (i.e.,
the norm) with respect to the utopia point, which gives origin
to a POP solution [3] and is also known as Compromise
Programming method. Jp(C) is a function representing the
generic norm, usually indicated with the symbol Lp [3],
applied to calculate the distance from the ideal vector. In
Section VI is reported a comparative performance analysis,
carried out by varying norms and weights combinations, aimed
at finding the better choice for the capacity allocation problem.
The use of weights wk,yz

, as well as different norms, allows
allocating capacity to virtual entities by differentiating the
importance of the performance metrics for different virtual
entities up to neglecting one or more metrics, if necessary. This
may be important to give more elasticity to capacity allocation
also in dependence on the provided service (e.g., telephony,
video-conferencing, audio/video streaming, web transactions)
and on the provider/user requirements (e.g., capacity and
energy costs, objective performance metrics versus P-QoS).

IV. THE OBJECTIVE FUNCTIONS

In this paper each physical entity represents an Earth Station
that transmits through a satellite channel. It is modelled as a
single buffer (as a consequence, physical and virtual entities
are not differentiated). Each considered entity is represented
by two objective functions that are the Packet Loss Probability,
shortly PLP, due to congestion (F1,1z = Plossz (Cz)) and
the Transmitted Power, shortly TP, (F2,1z = Wtxz

(Cz)) and
the constrain is defined by the amount of available capacity

(

Z�

z=1

Yz�

y=1

Cyz
≤ CTOT ). The PLP model used in this paper

deals with Transmission Control Protocol (TCP) based traffic
and is analytically reported in (9) as defined in [10]:

Plossz (Cz) =
kz ·N

2

z

(Rz·Cz·rttz
l +Qz)2

(9)

In this paper, the values of the variable reported in (9), applied
in the performance analysis section, and the related meanings
are: kz=128/81 is a constant depending on TCP parameters,
Nz =10 is the number of active TCP connection for the z-th
station, Qz is the buffer size, equal to 10 packets, for the z-th
station. rtt is the the round trip time, is equal to 512 [ms],
l =1500 [byte] is the TCP packet size and Rz and Cz are
the code rate and the capacity allocated to the z-th station,
respectively. Channel conditions vary over the time and, in

this paper, the experienced Carrier to Noise ratio
�C

N

�

z
for

each station represents the satellite channel status. Each Earth
Satellite station is supposed to apply different code rates in
dependence on the channel status. Code rates are assigned as
in Table I. This hypothesis allows considering packet losses
due to congestion because channel errors are made negligible
by applying encoding. In (10) we rewrite the equation (9) in
a simpler form. It will be useful in Section V for an easier
mathematical tractability:

Plossz (Cz) =
Az

(Dz · Cz +Qz)2
(10)
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TABLE I
APPLIED CODE RATES

�
C

N

�

z
[dB] 4.25- 4.75- 5.25- 5.75- 6.25-

4.75 5.25 5.75 6.25 6.75
Rz 1/2 2/3 3/4 5/6 7/8

where Az(Nz) = kz · N
2
z , Dz(Rz) =

Rcz·rtt
l . The TP of the

z-th station is reported in (11):

Wtxz
(αz , Cz) = (2

Cz
B − 1) · αz (11)

αz , called link constant in this paper, takes into account the
parameters related to the link budget. In more detail, it contains
the transmission antenna gain GTz

of the z-th station, the
receiver antenna gain on the satellite GR (common for each
station) both equal to 104, the Boltzman costant k equal to
1.38 · 10−23J ·K−1, the noise temperature T set to 290 [K],
the bandwidth of the satellite channel B=1 [MHz] and the
Free Space Loss (FSL) set equal to 1019 as defined in [11].
In practice, the coefficient αz is:

αz =
k · T · B · FSL

GTz
·GR

(12)

The Transmitted Power function is obtained by combining two

equations: Cz = B · log2

�
1 +

�
C
N

�

z

�
the Hartley-Shannon

law, and
�

C
N

�

z
=

GTz ·GR·Wtxz

k·T ·B·FSL that represents the carrier to

noise ratio [11].

V. THE CAPACITY BOUND OF THE COMPROMISE

PROGRAMMING

In this paper we consider Z physical entities, a single virtual
entity for each physical entity (Yz = 1 ∀z ∈ [1, Z]) and
two objective functions for each virtual entity (k = 2 ∀yz ∈
[1, Yz], ∀z ∈ [1, Z]). Considering the two objective functions
previously introduced, the vector F(C), defined in (2), can be
written as

F(C) =

�
A1

D1C1 +Q1

, (2
C1

B − 1)α1, ...,

AZ

(DZCZ +QZ)2
, (2

CZ
B − 1)αZ

� (13)

According to (6) the utopia points for the employed objective

function are F1,1z,id =
Az

(DzCTOT +Qz)2
and F2,1z,id = 0.

Consequently, the function Jp(C), representing the Lp norm
applied, that needs to be minimised to obtain the POP solution
of the so called Compromise Programming problem is, in
practice, a function of the vector C and of the totally available
capacity CTOT :

Jp(C, CTOT ) =

� Z�

z=1

w1,1z

� Az

(DzCz +Qz)2
−

+
Az

(DzCTOT +Qz)2

�p

+ w2,1z

�
(2Cz/B − 1)αz

�p
�1/p

(14)

The aim of this section is to show that, given fixed channel
conditions, if the overall capacity available for the entire
communications system significantly grows, the POP solution
provided by solving (7), considering Jp(C, CTOT ) as defined
in (14), will not significantly change tending, in the sense of
a horizontal asymptote, to a quantity called Capacity Bound
Cbound. From a formal viewpoint,

Cbound =

Z�

z=1

Cbound
z , Cbound < CTOT (15)

where Cbound
z is the portion of capacity allocated to the

z− th Earth Station when the overall allocation converges on
the defined bound. The mentioned Cbound exist and is finished
if Cbound

z ∀z ∈ [1, Z] is a quantity independent of CTOT when
CTOT tends to infinity. In practice, the following conditions
must be satisfied:
Condition 1: The limits of the partial derivatives of the

function Jp(C, CTOT ) as CTOT approaches to infinity are
functions of the sole capacity vector C:

lim
CTOT→∞

∂Jp(C, CTOT )

∂Cz
= ∂Jp,z(C), ∀z ∈ [1, Z] (16)

Condition 2: Cbound
z must represent a coordinate of an

equilibrium point:

Cbound
z = {Cz ∈ [1, CTOT ) : ∂Jp,z(C) = 0, ∀z ∈ [1, Z]}

(17)

Condition 3: The Hessian matrix of the problem (7), H(C),
must be positive-semidefinite:

det
�
H(C)

�
≥ 0, ∀Cz ∈ [0, CTOT ] (18)

Obviously, the Conditions 2 and 3 are related to the
existence and uniqueness of the minimum of the functions
Jp(C, CTOT ) computed if CTOT → ∞.
In the specific case of this paper, considering the previ-
ously defined conditions, we firstly compute the gradient
∇Jp(C, CTOT ) and we set it equal to zero to obtain the
mentioned Jp(C, CTOT ) minimum. In (19) is reported the
z − th component of the gradient vector:

∂Jp(C, CTOT )

∂Cz
=

�

w1,1z

� Az

(DzCz +Qz)2
+

−
Az

(DzCTOT +Qz)2

�p−1

·
−2AzDz

(DzCz +Qz)3
+

+ w2,1z

�
2Cz/B − 1

�p−1

·
2Cz/Bln(2)αp

z

B

�

·

·

�
Z�

z=1

w1,1z

� Az

(DzCz +Qz)2
−

Az

(DzCTOT +Qz)2

�p

+

+ w2,1z

�
(2Cz/B − 1)αz

�p
�
1

p
−1

(19)

As said about the Jp(C, CTOT ) function, the z−th component
of the gradient is a function of Cz, ∀z ∈ [1, Z], and CTOT . In
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general, it means that the compromise solution is a function
of CTOT . If we consider a significant increasing of CTOT

(i.e., CTOT tends to infinity) the contribute of the term
Az

(DzCTOT +Qz)2
decreases and tends to zero. Formally

lim
CTOT→∞

∂Jp(C, CTOT )

∂Cz
=

�

w1,1z

� Az

(DzCz +Qz)2

�p−1

·

·
−2AzDz

(DzCz +Qz)3
+ w2,1z

�
2Cz/B − 1

�p−1

·
2Cz/Bln(2)αp

z

B

�

·

�
Z�

z=1

w1,1z

� Az

(DzCz +Qz)2

�p

+ w2,1z

�
(2Cz/B − 1)αz

�p
�
1

p
−1

(20)

The expression defined in (20) shows that the solution of
the equation ∇Jp(C, CTOT ) = 0 is independent of CTOT

(i.e., is constant with respect to CTOT ) if it significantly
grows so satisfying Condition 1. Indeed, the expression found
in (20) is ∂Jp,z(C). In detail, the allocation that can be
obtained by equation (20) depends only on the link constant,
the protocol parameters and by the employed norm. Moreover,
it is easy to proof that the Conditions 2 and 3 can be easily
satisfied. Obviously, the obtained Cbound represents a Capacity
Bound, defined in (15), whose existence strictly depends on
the conditions, in terms of objective functions, considered in
this paper. From the practical viewpoint, a Service Provider
may provide capacity allocations to the Z Earth Stations
without employing the overall available capacity and may
dedicate the rest of the capacity to other possible entities.
It can be done without penalising the performance because
the allocation represents a compromise (in the sense of [2]).
On the other hand, the result allows designing the minimum
amount of CTOT needed to obtain a compromise solution
among Z stations without capacity wasting.

VI. PERFORMANCE ANALYSIS

The scenario considered in this performance evaluation has
been implemented through the ns-2 simulator. It is composed
by Z = 2 Earth Stations, that transmit TCP traffic over a
common geostationary satellite channel. The overall duration
of simulations is 300 [s]. The allocation is done each 5 [s] (i.e.,
allocation period), and the channel condition experienced by

each station, expressed by
�C

N

�

z
, is randomly varied (by fol-

lowing a uniformly distributed probability density function of
the values reported in Table I) and kept constant in each alloca-
tion period. Each value of the capacity and of the performance
metrics reported in the figures and tables below represents the
average of the values obtained by a number of simulation runs
aimed at guaranteeing a confidence interval of the 95%.The
key concept of this paper is the Capacity Bound on which
the compromise solution converges if the overall available
capacity CTOT significantly increases. As previously reported
in Section V given the objective function that models the

QoS, the Packet Loss Probability (PLP) Plossz (Cz) (9), and
the Transmitted Power (TP) Wtxz

(αz , Cz), the compromise
solution is not a function of the overall capacity CTOT if it
tends to infinity. In Fig. 1, the compromise solution is reported:
it represents the capacity globally allocated to both the stations
(i.e., the sum of the capacities allocated to the two stations)
obtained by varying CTOT in the interval [1 − 10] [Mbps].
Four norms (p = [1, 2, 3, 4]) have been considered and both
the metrics have been equally weighted (w1,11 = w1,12 = 0.5).
The allocation of the overall available capacity has been
reported as reference. The compromise solution stays on the
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Fig. 1. Globally Allocated Capacity versus CTOT .

constrain if CTOT ≤ 2 [Mbps]. If CTOT > 2 [Mbps] the
compromise solution is constant, around 2.6 [Mbps], for all
the value of CTOT . This is true for all the norms applied.
It practically confirms the Capacity Bound whose existence
has been discussed in Section V. The Capacity Bound has
a significant impact on the performance. Fig. 2 shows that
the PLP remains constant around 0.055. It is not far from
the PLP level requested by many applications. In fact, as
shown in Table III, the PLP level can be enhanced without
impacting the TP significantly. The TP of a station is the
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Fig. 2. Packet Loss Rate versus CTOT variation.

second considered performance metric in this work coherently
with Section IV. Its values are plotted in the Fig. 3. The TP
is constantly lower than 0.1 [W] for each considered norm.
This happens because the capacity allocated to each station,
with the proposed method, is constant. If the allocations would
follow the CTOT behaviour the TP would grow exponentially.
The proposed Lp-problem based Allocation criterion allows
differentiating the solutions through weights applied to the
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Fig. 3. Transmitted Power versus CTOT variation.

objectives functions. Also the choice of a different norm, to
compute the distance to the ideal point, may modify the POP
position. In Table II the solutions, in terms of capacity globally
allocated to the two stations, over norms and weights variations
are reported. For all the applied norms, the most capacity
saving weights combination, among the case considered in
this work, is w1,1z = 0.1, w2,1z = 0.9, applied to both stations.
This particular configuration assures also a reduction of power
transmitted but also, at the same time, an increase of the packet
loss rate, as reported in Table III and Table IV. Vice versa
w1,1z = 0.9, w2,1z = 0.1 assures the minimum of the PLP but
also the maximum TP, allocating the maximum of the capacity.

TABLE II
CAPACITY BOUND IN [BPS] VERSUS NORMS AND WEIGHTS VARIATIONS

w1,1z 0.9 0.75 0.5 0.25 0.1
w2,1z 0.1 0.25 0.5 0.75 0.9

Norm L1 4805973 3698414 2763434 2035985 1328196
Norm L2 3744290 3237478 2730666 2285021 1931127
Norm L3 3368550 3012471 2686976 2453230 2202009
Norm L4 3233109 2925090 2761250 2501290 2274099

TABLE III
PLP VERSUS NORMS AND WEIGHTS VARIATIONS

w1,1z 0.9 0.75 0.5 0.25 0.1
w2,1z 0.1 0.25 0.5 0.75 0.9

Norm L1 0.02484 0.03425 0.051153 0.06913 0.10498
Norm L2 0.03332 0.04113 0.047654 0.05864 0.07351
Norm L3 0.03837 0.04373 0.048793 0.05839 0.06198
Norm L4 0.04262 0.04507 0.049593 0.05329 0.06055

TABLE IV
TP IN [W] VERSUS NORMS AND WEIGHTS VARIATIONS

w1,1z 0.9 0.75 0.5 0.25 0.1
w2,1z 0.1 0.25 0.5 0.75 0.9

Norm L1 0.17282 0.10504 0.06449 0.041283 0.02349
Norm L2 0.10766 0.08353 0.06348 0.048509 0.038333
Norm L3 0.08913 0.07446 0.06193 0.054092 0.045848
Norm L4 0.08342 0.07080 0.06456 0.055427 0.048237

VII. CONCLUSIONS

The work proposes a capacity allocation criterion based on
the Lp-problem representative of a compromise solution if

Packet Loss Probability (PLP) and Transmitted Power (TP) are
taken into account as performance metrics. Moreover, starting
from the proposed Lp-problem allocation and considering
PLP and TP defined as in Section IV, the paper highlights
the existence of a Capacity Bound on which the allocations
converge. The bound is independent of the overall capacity
available CTOT . The proposed performance analysis shows the
performance of the proposed allocation approach and the Ca-
pacity Bound existence. It allows concluding that the proposed
method enables a significant capacity and TP saving and,
simultaneously, a limited worsening of the PLP. Practically, a
Service Provider may provide capacity allocations to Z Earth
Stations without employing its overall available capacity and
may dedicate the rest of it to other possible entities without
penalising the overall performance and avoiding satellite ca-
pacity wasting.
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